
A scalable architecture for video-editing web
applications

Christiaan Ottow

January 9, 2009

Abstract

A web application for video editing has high demands for processing power,
storage and bandwidth. Digital video material has a very high bandwidth and
results in large files. Also, editing these files takes a lot of processing capacity.
Creating a scalable design for such an application may therefore require more
than the standard approach to web application scalability.

In this research we examine current approaches to load balancing in web ap-
plications and create a scalable application design for the case study. This
design is based on existing approaches but also includes approaches which
are specific to web applications for video editing.

A prototype of the application design is created, and tests are run on it to vali-
date that it is scalable. Potential bottlenecks in the architecture are discussed.

The conclusion is reached that the design proposed in this research is scal-
able, but that a limit on its scalability exists. By extrapolating the test data and
comparing the design to a design currently in use in large web application, we
conclude that it is not likely that an application for online video editing such as
the case study application, would encounter this limit.

Since web applications are more and more replacing desktop applications for
all kinds of tasks, it is important that architecture and scalability of such appli-
cations is researched. This research adds to that knowledge by suggesting a
design and by an in-depth description of current practices.

Contents

1 Introduction 6

1.1 Context . 6

1.2 Research questions . 9

1.3 Approach . 9

1.4 Report structure . 10

2 Definitions and state of the art 11

2.1 Definition of scalability . 11

2.2 Principles of scalability in web systems 12

2.3 Scaling of database and storage systems 17

2.4 Scaling of HTTP systems . 21

3 The case study application 29

3.1 System tasks . 29

3.2 Requirements . 30

3.3 Components . 31

4 System design 33

4.1 Overview . 33

4.2 HTTP service component . 34

4.3 Video hosting component . 35

4.4 Video processing component . 36

4.5 Database component . 36

4.6 Storage component . 38

1

Contents

5 Validation of the solution 39

5.1 Approach . 39

5.2 Results . 45

5.3 Discussion . 50

6 Conclusions 52

6.1 Recommendations . 54

A Case study of Slashdot 56

A.1 Introduction . 56

A.2 Application profile . 56

A.3 Infrastructure . 57

A.4 Conclusions . 57

B Case study of Akamai 59

B.1 Introduction . 59

B.2 Application profile . 59

B.3 Infrastructure . 59

B.4 Conclusions . 61

C Case study of Google Search 62

C.1 Introduction . 62

C.2 Application profile . 62

C.3 Infrastructure . 63

C.4 Conclusions . 64

2

List of Figures

1.1 Web application spectrum . 8

2.1 Architectural solutions for scalable web application systems . . . 13

2.2 Simplified topology of the internet 14

2.3 Database replication . 20

2.4 MySQL cluster . 21

2.5 Architecture of a web cluster . 25

2.6 Architecture of a virtual web cluster 26

2.7 Architecture of a distributed web system 26

3.1 System components and relations 32

4.1 Architecture . 33

4.2 Extended architecture . 37

5.1 Prototype components . 41

5.2 HTTP response times setup 1 . 46

5.3 HTTP response times setup 2 . 47

5.4 Video queue times setup 2 . 47

5.5 Load balancer CPU load with 47 users 48

5.6 Load balancer CPU load with 94 users 48

5.7 Load balancer network throughput 47 users 49

5.8 Load balancer network throughput with 94 users 49

5.9 Database master CPU load with 47 users 50

5.10 Database master CPU load with 94 users 50

3

List of Figures

A.1 Slashdot network infrastructure 58

B.1 Akamai network infrastructure . 60

C.1 Google Search infrastructure . 63

4

Preface

This is the report of the bachelor research project I carried out for my study
Telematics at the University of Twente. It started in October 2007 and ended
in December 2008. The research is an external assignment from Furthermore
B.V., a web application development company in Amersfoort.

The project was supervised by Maarten Wegdam and Aiko Pras for the Uni-
versity of Twente and by Igor van Oostveen for Furthermore.

The audience of this report is expected to have basic knowledge of com-
puter systems, internet, web applications, databases and software engineer-
ing. More specific topics as scalability and load balancing are defined and
explained.

Christiaan Ottow, January 2009

5

Chapter 1

Introduction

In this chapter we will describe the research itself. First we will look at the
context, then at the research questions and approach.

1.1 Context

Before we discuss the case study, we will discuss what web applications are,
and which scalability issues they have. We will show how the case study rep-
resents a specific type of web applications, and then discuss the case study
itself.

1.1.1 Web applications

Web applications are software programs that are accessed through a web
browser and are stored on a web server. As such, they are not installed on
a client’s computer (although the client may need to install special software in
order to run web applications, such as Adobe Flash player).

When a client accesses a web application, part of the application logic is often
transferred to the client (Javascript, Flash, Silverlight) while part of the appli-
cation logic remains on the server. The part that is transferred to the client
communicates with the server through the browser. Some web applications
however transfer no logic to the client, only data and layout information. Data
storage is always done on the server.

The use of this paradigm results in little demands of clients: no (or little) soft-
ware needs to be installed in order to use a web application and the hardware
requirements are low since most of the application is usually run on the server.
Also, the environment in which the application runs is predictable to the soft-
ware maker since the server remains the same. The clients may use different

6

Chapter 1: Introduction

browsers, but the differences are small compared to the differences ‘traditional’
software makers need to solve when working on multiple operating systems.

Another characteristic of web applications is that less processing power is
needed by the clients. A very load-intensive application can be run by a fast
server, with many simple clients connecting to, giving instructions and viewing
output. This can also be a disadvantage since lots of proccessing power is
needed at the server side while the processing power available at the clients
remains unused.

Web applications are being used more and more to take over tasks that were
thus-far performed by normal desktop applications. This trend is described
as Software as a Service (SaaS[17]). This means that the load (computa-
tions) that were done on desktop computers until now, are being moved to
the servers of web applications. For instance, an increasing number of people
prefers webmail over normal desktop mail, using Gmail or Windows Live Mail
(formerly Hotmail) instead of Outlook or Thunderbird, or even some form of
online document processing (such as Google docs) instead of a conventional
word processor such as Microsoft Word. Also, these software services can
be sold not as traditional software packages for which you pay once, but as a
service with a periodical fee that you pay as long as you use it. The software
vendor controls the service and can deploy new versions and updates without
needing to change configurations at the clients of the service.

1.1.2 Web application scalability

So, the demands on web applications have increased. This can create prob-
lems in different fields. For applications like Google Search, the problem is how
to service hundreds millions of requests per day, and still deliver the search re-
sults to each query quickly. Although Google Search deals with lots of collected
data, they do not have to transfer this data to clients. For YouTube, the amount
of data is a problem in terms of storage and network traffic. Figure 1.1.2 gives
some examples of web applications and their required processing power and
data transfer.

We will focus on web applications in the right top of the spectrum: those which
place high demands on data (storage and throughput) and processing power.
An example of this is online video editing. As a web application grows, the
demands on the hardware increase. As we will see in chapter 2, this can be
dealt with either by replacing the hardware with faster hardware or by duplicat-
ing components of the system and distribute the load among them. The first
approach ends when one uses the fastest hardware available, leaving only the
second approach. However, applications need to be designed with scalability
in mind in order for this expansion to be possible. This way of designing what
we will focus on in this research.

7

Chapter 1: Introduction

Figure 1.1: Web application spectrum

Amount of data

Re
qu

ire
d

pr
oc

es
sin

g
po

we
r

WebmailCMS

Search
engines

Video
editing

In this research, we will look at how an application that places high demand
on processing power and storage, can be designed in order to be distributed
across different physical systems in order to achieve scalability.

1.1.3 The case study

Furthermore BV has been commissioned for a new project. This project,
named “WannaMakeMovies”, is a web application that allows users to create
and edit videos. It targets the people for whom Apple’s iMovie and Windows
Movie Maker are too complex. They dont need to install any software, and the
interface is very simple. Users can upload their media, and combine it with
media from the built-in library. They can glue their clips together or split them,
and apply simple transitions such as fade to black and hard cut. They can also
add text titles to the clips. After this, the content can be published in different
ways, like automatically uploading it to YouTube, downloading it, sending it on
DVD/CD.

WannaMakeMovies will be a website where users can edit and share their
movies, in a typical Web 2.0 community fashion. It will also be a white-label
product sold to companies, for whom it will be branded to match their specific
purpose. For instance, a travel agency might rent WannaMakeMovies for a
monthly fee, and then have customers create their travel movies online. The
travel agency will then fill the library with sunsets, airplanes taking off and
landing and so on. This service does not have a direct connection to the
WannaMakeMovies community website.

For this project, which has an unprecedented scale for them, Furthermore
needs a solution for how to organize the application and the data to be able to
scale along with the number of users using the system. In their browser, users
will work with small lower quality versions of their clips, audio files and images
to apply transitions, and titles, and change the order of the clips. Afterwards,

8

Chapter 1: Introduction

their changes will be applied to the real data on the server, and necessary
conversions will be made there. Video editing causes a lot of network traffic
due to the large size of the files in question, and a lot of server load when
format conversions and video effects are applied.

The project will start with a small number of users, but the system must be
designed to be able to grow to a very large number of users without having to
modify application structure. Up-scaling the system should ideally be a matter
of adding new hardware only.

This research will show how a web application that places high demands on
processing power and data flow/storage can best be designed to be scalable.
The output will be a design for their application.

1.2 Research questions

As stated in the discussion of the background of this project, the research
will focus on web applications that place high demands on data capacity and
processing power. A video-editing web application is representative for this
category. Therefore, the central research question is:

How could web applications for online video-editing be designed in
terms of application architecture in order to be highly scalable?

From this research question, a number of sub-questions rise that need to be
answered in order to answer the main question. These questions are:

• What are the definitions and state of the art of scalability and web appli-
cation distribution?

• What are the requirements and characteristics for scalability in the case-
study?

• How could the application be designed to be scalable to the extent in
which it is required in the case study?

• Can we identify potential bottlenecks and verify the scalability of the pro-
posed design using measurements made on a prototype of the proposed
design?

1.3 Approach

This research will be conducted in an iterative way, using two iterations. The
first iteration serves to explore the subject and get an idea of the possibilities

9

Chapter 1: Introduction

and pitfalls. The second iteration will deliver the final solution. Each iteration
has three phases:

1. Requirements and definitions analysis

2. Creating a design

3. Validation of the design

Definitions, state-of-the-art and requirements analysis
We look at key terms that need to be defined, state-of-the-art approaches to
these subjects and requirements to our design.

Creating a design
A solution to the architecture problem is formulated during this phase. This
design will be a written idea of a software architecture on an abstract level (not
including specific soft/hardware).

Validation of the design
The design must be validated to see if it meets the requirements. We will create
a prototype of the design and simulate users in order to run tests, showing if it
meets these requirements, and if bottlenecks exist.

1.4 Report structure

This report has the following stucture. Chapter 2 contains definitions and state-
of-the-art: results of the literature study. We will then more closely examine the
case study to discover requirements, system tasks and system components in
chapter 3. In chapter 4 an answer to the research question, in the form of a
software design, is presented. It is validated in chapter 5. Finally, we present
our conclusions in chapter 6. In this report we do not distinguish between the
first and second iteration.

10

Chapter 2

Definitions and state of the art

This chapter is the result of literature study. First we will define the concepts
of scalability and load balancing. Then we will look at what principles play a
role in scalability of web systems. After this, we will take a detailed look at how
various components of a web system are scaled and the role load balancing
plays in this scaling. Finally we will see how virtual machines can be used to
achieve scalability.

2.1 Definition of scalability

Scalability is a often used but poorly defined term. In all implicit and explicit
definitions, it involes the extensibility of a system, the extent to which it allows
for growth.

The LINFO project gives us the following definition of scalability[6]:

”Scalable refers to the situation in which the throughput changes
roughly in proportion to the change in the number of units of or
size of the inputs. It can also be looked at as the cost per unit of
output remaining relatively constant with proportional changes in
the number of units of or size of the inputs. Scalability refers to the
extent to which some system, component or process is scalable.”

This definition approaches scalability as a system in which the relation be-
tween resource usage and demands of the system is at most linear. This is
even better defined by Brataas et al[3] in the definition that will be used in this
research:

”An architecture is scalable if it has a linear (or sub-linear) increase
in physical resource usage as capacity increases ”

11

Chapter 2: Definitions and state of the art

Furthermore, scalability can be mentioned in the context of many specific soft-
ware qualities, such as performance, mean-time-to-failure, amount of memory
usage, reliability, response time.[5]

In our case, the number of users that use the system is proportional to the
resource usage. Capacity is defined by the hardware we use. Furthermore,
we talk about the potential resource usage, not actual resource usage. If less
users than the potential maximum use the system, this does not make the
system less scalable.

Our architecture is scalable if it has an at least linear increase in
users that can use the system as hardware is added.

So the system is scalable if the number of users that can be added is propor-
tional to the amount of hardware added: twice the hardware should result in
twice the user capacity.

Load balancing is a term often used in computing, especially in network-related
issues. It is important to us since when attempting to make a system scalable
beyond the maximum capacity of a single unit (hardware or software). When
using multiple “units”, load will have to be balanced among them.

Load balancing, most literally, is the balancing of load. It is a general term for
techniques used to distribute load across multiple systems. Since we are look-
ing for a scalable solution for a web application, we will look at load balancing
in this context. We will use the following general definition[2]:

Distributing processing and communications activity evenly across
a computer network so that no single device is overwhelmed.

2.2 Principles of scalability in web systems

In the following sections we will look at how scalability is applied in web sys-
tems. Before we start, we will describe some terms that are used in this chap-
ter but can have many different meanings.

Web application
A web application is a software application that implements a web service and
runs on a web system. The web application consists of programming code and
digital resources (data), not hardware.

Web system and web service
In this report, a web system is a (possibly distributed) computer system that
is designed to provide a web service. A web service is a service provided
to users via the internet by means of the HTTP protocol. The web service is

12

Chapter 2: Definitions and state of the art

implemented by a web application. A web system consists of hardware. A
typical web system consists of HTTP servers (also referred to as web servers
or webheads) and a database system. Large web systems also use a storage
system for centralized storage. The HTTP servers run the application which
uses the database and storage systems for in and output.

There are many approaches to scalability in web applications. We distinguish
between scale-up (scaling of a single node) and scale-out (multiple nodes)[7]
as in figure 2.1.

Figure 2.1: Architectural solutions for scalable web application systems

Scalable
web server

Scale-up
(single
node)

Hardware
scale-up

Software
scale-up

Scale-out
(multiple
nodes)

Global
scale-out

Local
scale-out

As can be seen in figure 2.1, there are two main approaches to scaling: scale-
up and scale-out. While these terms are used with different meanings, we
use them to distinguish between trying to increase the capacity of a single
server node (scale-up) and using multiple nodes for increased capacity (scale-
out). Scale-up can be achieved by upgrading the hardware to hardware with
higher performance, or by optimizing the software. In this research however,
we do not focus on scale-up but on scale-out. In scale-out, there are two
approaches: global and local scale-out. The difference between the two is that
in local scale-out the nodes are located at the same geographic location, while
in global scale-out they are elsewhere. These two approaches each solve
different problems and require different techniques.

2.2.1 Local scale-out

Local scale-out is when multiple nodes, together in a network, are used to
increase the capacity of a system. They form a virtual server (or cluster),
appearing as one server to the outside world. By using multiple servers, the
performance is increased. In section 2.4 we will take a closer look at how such
a cluster functions to balance load.

13

Chapter 2: Definitions and state of the art

Figure 2.2: Simplified topology of the internet

Internet user

Internet user

Internet user

Internet user

Internet user

Internet user
ISP A

Datacenter B

ISP B presence

Datacenter A

ISP A presenceEurope

Asia

ISP B

Tier-1 provider
presence

Tier-1 provider
presence

Tier-1 provider
network

Internet 'edge'

Internet 'core'

Internet 'edge'

Web Cluster

14

Chapter 2: Definitions and state of the art

In local scale-out, the nodes are connected via a local area network, so they
have a very high speed network between them. Incoming requests are dis-
patched among them according to a certain dispatching algorithm (see sec-
tion 2.4), and all the resources needed to send a response to the request are
available to all nodes (database, storage).

The problem that one server could not handle the load is solved by local scale-
out: when more capacity is needed, you add more nodes to the virtual server.
However, the cluster is located in one physical location. If the network con-
nection to the outside world would fail, the whole cluster would be unavailable.
This is solved by multihoming: having multiple redundant uplinks using differ-
ent providers.

Figure 2.2 shows a simplified topology of the internet, and the place a locally
scaled-out web system has. While local scale-out solves the problem of high
demand, it still leaves other problems unsolved. Scaling a system using local
scale-out will eventually reach a bottleneck, for one of the following reasons:

• Software configuration; maximum number of nodes for an algorithm im-
plementation;

• Architecture; because of a bottleneck in the system adding more nodes
is useless;

• Physical space availability;

• Power availability;

• Bandwidth availability

Also, when a web system is accessed from locations which are geographically
far away, the round-trip time from client to server is very high for remote clients.
The network between these clients and the system may not be very reliable.

Furthermore, the availability of the cluster cannot be higher than that of the
data center it is in. This may be a problem for systems requiring very high
availability.

2.2.2 Global scale-out

Global scale-out can be used to overcome these problems. With global scale-
out, (virtual) servers are spread out across multiple geographical locations. In
section 2.4.2 we will discuss the workings of load balancing in global scale-out.
The problems mentioned above are solved:

• When the limit in scaling of a cluster is reached, another cluster is intro-
duced;

15

Chapter 2: Definitions and state of the art

• When limits in power, bandwidth and physical space of a data center are
reached, a new cluster is started in another data center;

• Clusters are placed close to end-users in terms of network hops: they
can be placed at the edge of the internet, directly connected to the users’
internet providers;

• By placing the clusters in different data centers, the reliability of a single
data center is no longer a problem.

Global scale-out simply replicates local scale-out across different physical lo-
cations. Apart from increasing capacity, global scale-out is also used to provide
users from different countries with different content. For example, when visiting
www.youtube.com from the Netherlands, you get the Dutch YouTube website
which features different videos than the international one does. When we look
at figure 2.2 again, global scale-out would be to place another web cluster in
datacenter B and make sure users from ISP B are directed to it.

Global scale-out is also used to lower long-distance network usage. Content is
kept as close as possible to the end-users so traffic between the different clus-
ters is minimal. Apart from being much more expensive, international traffic
also introduces higher delays.

Also, when having multiple clusters, when one cluster is overloaded and the
others aren’t, they can shift load between one another.

The problem of reaching a bottleneck in architecture, as exists in local scale-
out, is only partially solved by global scale-out. Since load balaning is done on
a higher level, balancing load between clusters instead of nodes, the system
can grow much further, but eventually, if it keeps on growing, will reach an
architectural bottleneck again.

Content distribution
Web applications provide different types of content to their users: static and
dynamic content. Static content can be any kind of file which is available on
the server in the form it is sent to the client, such as images. Dynamic con-
tent needs to be assembled or processed by the server before being sent
to the client. In the context of web applications, dynamic content is usually
a HTML/CSS/Javascript page or piece of XML data that is generated by a
server-side application. To generate these pages, the server application may
use static content and information from a database.

When looking at the simplified internet topology in figure 2.2, applying global
scale-out would mean adding a cluster at datacenter B for users of ISP B.
Assuming we want to provide all users of the web application with the same
content, we have multiple options on how to distribute the content.

At one end of the spectrum, we would have the full application and all its data at
both locations. This would allow both locations to generate the dynamic pages

16

www.youtube.com

Chapter 2: Definitions and state of the art

needed. They would have to keep the data in sync, and when the application
code changed it would have to be updated at both locations. The advantage
of this approach is that the content served to the users is always fresh. Syn-
chronization of data between the locations however might be a problem.

At the other end, we could appoint one location as ’origin location’ and only
have a large cache at the other location. Changes in the master location would
bubble into the caches delayed. The lifetime of pages in the cache should
not be too long since their content is dynamic. Requests that change the
data would still have to be forwarded to the origin location. The advantage
of this approach is that content does not need to be synchronized, but the
disadvantage is that caching dynamic pages leads to inconsistencies or slow
updates.

There are ways to combine the two extremes. For example, using Edge Side
Includes (ESI1), different parts of a webpage can have a different cache life-
time. An image may have a longer lifetime than a piece of text showing the
number of users that are online. By using ESI, bandwidth to the origin location
can be reduced by 95 to 99 percent for dynamic sites[4].

2.3 Scaling of database and storage systems

Web applications need storage space to store content like images, videos,
HTML files and user information. Usually, part of this information is stored in a
database and part is stored directly on a filesystem. Information that comes in
files and only needs to be passed through to the user (like images, videos and
HTML files) can be stored on a filesystem, avoiding the overhead of a database
system. Information like user accounts, parts of website content, forum/weblog
posts however aren’t files, and often need to be searched through, combined
and updated. This information is usually stored in a relational database man-
agement system (DBMS) like MySQL or Oracle.

Both systems (filesystems and DBMSs) require a different approach to scal-
ability, although similarities can be found due to the read/write nature of both
systems. Databases and filesystem storage systems are the ‘write’ part of a
web system. The component responsible for execution of the web application
itself, the web servers, only read data and present it to the client. Therefore,
scaling these systems takes a different approach.

2.3.1 Scalability of file storage systems

In this section we will discuss the scalability of filesystem storage, which we
will now simple call ‘storage’ (as opposed to ‘databases’ or ‘DBMSs’).

1http://www.esi.org

17

http://www.esi.org

Chapter 2: Definitions and state of the art

Network File System

Storage systems can be connected to the webheads in several ways, on dif-
ferent layers. A popular solution is by using the Network File System (NFS)
[16] protocol, an open standard specified in the RFCs 1094, 1813 and 3530.
It is an application layer protocol, operating on top of TCP (or UDP in older
versions). Clients can mount NFS shares and access them as if it were a local
filesystem. It supports locking and access control. NFS servers can be normal
servers running open-source NFS software.

NAS and SAN systems

An NFS server is a form of Network Attached Storage (NAS)[15]. NAS sys-
tems are storage systems that are attached to an TCP/IP network, offering
storage services on file level through NFS, CIFS (Microsofts file sharing pro-
tocol, also known als SMB), AFP and other protocols. Apart from installing
server software on a normal server to turn it into a NAS system, one can pur-
chase specific NAS hardware. These commercial NAS systems often offer
scalability and redundancy.

Another way of using central storage in a server cluster is a Storage Area
Network (SAN)[18]. In a SAN, storage in central like in a NAS only it is not
accessed at file level, but at block level. Clients tunnel their I/O commands
through a storage network (usually with iSCSI[12] or Fibre Channel[11]) to the
SAN system. Using iSCSI, the network is connected using normal ethernet
networking, allowing for speeds up to 1 Gbps. When Fibre Channel is applied,
speeds up to 10 Gbps can theoretically be reached.

Many commercial NAS and SAN systems exist, allowing for hotplugging of
disks, snapshots, redundancy and many other features. The exact technolo-
gies used by the different companies are beyond the scope of this research.

Scalable software solution

As said, a network-attached storage system can be created by installing NFS
server software on a normal server. One could install other file related service,
like an CIFS or FTP server in order to create a NAS. However, these solutions
are not scalable beyond the hardware up-scaling of the storage server. Due to
the read/write nature of storage (versus the read-only nature of a web service)
it is hard to balance load to a storage system among multiple storage nodes.

However, data partitioning is a way in which load balancing can be applied. It is
not transparent, but must be implemented in the application using the storage
system. For example, if we look at a video-hosting web application, many video

18

Chapter 2: Definitions and state of the art

files will be on the storage systems. If a database would be created where the
meta-information about the video files (like owner, relations, keywords) would
be stored, we could also store a “storage tag” there. This storage tag could
indicate on which storage system to find the file itself. Or in another example,
user home directories on a central storage. We could have different storage
servers and setup the software so that it would look for user data of usernames
starting with one of the letters ‘a’ through ‘e’ on server one, ‘f ’ through ‘j ’ on
server 2 and so on. Although this method does not provide in transparent load
balancing, it is usable. It scales the capacity (by using more servers) and also
the throughput, provided that the content is spread across the servers with
respect to how often it is accessed. If the most-accessed data would all be on
one server, it would still be a bottleneck.

Another software solution is using a “clustered filesystem”[10] or “shared-disk
filesystem”. Such a filesystem is accessed from multiple servers. Concurrency
is regulated on a lower level than files, permitting concurrent access to the
same chunk of data. Each system using the clustered filesystem is presented
a serializable view of the total filesystem. Examples of open source clustered
filesystems are Coda (http://www.coda.cs.cmu.edu) and GlusterFS (http:
//www.gluster.org/). Such a clustered filesystem can be used by multi-
ple NFS servers in order to create a scalable storage cluster. Open-source
clustered filesystems are being developed but not very mature yet. Proprietary
clustered filesystems are used by SAN vendors.

Some storage products offer a scalable solution by using both NAS and SAN.
Webheads will access an NFS server, which has spread the actual data across
multiple SAN nodes. The SAN nodes together form a virtual harddisk partition.

2.3.2 Scaling of database systems

For databases, almost the same problem as for storage exists. It is difficult
to balance load across multiple servers, since that would mean that multiple
servers need to synchronize the data with each other. With webheads this is
not a problem since the data isn’t changed by the client requests, the web re-
quests lead to changes in the database and storage. However, software-based
solutions exist in the area of databases. We will look at the most common ones.

Replication

Most Relational Database Management Systems (RDBMSs) support a form of
replication to achieve higher scalablity. With replication, queries to one server
are “replicated” one or more other servers (see figure 2.3). In replication, a
database node be either a master or a slave. A slave watches the master, and
queries to the master that update the data (UPDATE, DELETE, ALTER etc)

19

http://www.coda.cs.cmu.edu
http://www.gluster.org/
http://www.gluster.org/

Chapter 2: Definitions and state of the art

are replicated to the slave. They are not executed right away on the slave, but
delayed to a convenient time. Queries that only read from the data are ignored.
Several slaves can watch a master, and masters can be slaves watching other
masters.

Figure 2.3: Database replication

Slave DBMS 2Slave DBMS 1Master DBMS

Web Server 1 Web Server 2 Web Server 3

writes reads

This may not seem like a solution, since write queries are still executed on all
nodes. However, read queries are usually the most demanding queries in a
RDBMS. They often involve combining all the rows of several tables (joining)
and comparing all of them against a set of criteria. Write queries never inv-
ole multiple tables. Furthermore, web applications usually involve mostly read
queries to present content to a visitor, and little write queries. Using replication,
these read queries can be balanced across many servers.

Replication has an issue with consistency, however. The writes to the slave
database are not executed instantly, so after a write to the master the system
is in an inconsisten state until the write has been executed on all the slaves.
This issue is not solved by the replication model.

Data partitioning

Of course, data partitioning is possible in the same way it is possible for stor-
age systems. One could use multiple database servers, and store different
datasets in them. The problem with this approach is that often queries will span
across multiple tables, which using partitioning might be on different servers.
Queries will need to be split up into smaller queries to different servers.

However, just as with data partitioning in storage systems, the frequency at
which certain parts of the data are accessed must be considered when creat-
ing the partition. Placing a lot of frequently accessed data in one partition will
still create a bottleneck.

20

Chapter 2: Definitions and state of the art

Clustering

MySQL (a popular open-source RDBMS) supports another method of scaling:
clustering. While clusteirng is a general term, in MySQL terms it refers to
a certain setup of database nodes running a special version of the MySQL
software. The setup is shown in figure 2.4.

Figure 2.4: MySQL cluster

Storage nodes

Application nodes

Management node

Web Server 1 Web Server 2 Web Server 3

MySQL Cluster

The actual data is partitioned and stored in the storage nodes. They also
synchronize data with each other to provide in an active/active failover system.
When a data node fails, there is always at least one other data node which has
the same information. The application nodes form the interface to the data.
They can be MySQL servers but also MySQL APIs used by other services.
There is no interdependence between the application and data nodes. The
management nodes maintain cluster information, and are used when a node
wants to join the cluster or when there is a cluster reconfiguration. They can
be started and stopped without affecting the clusters operation.

The MySQL cluster offers scalability since data nodes can be added to the
system to increase storage space, and application nodes can be added to
increase performance.

2.4 Scaling of HTTP systems

We have seen how scalability is achieved in two components of web systems:
database systems and storage systems. In this section we will see how scala-

21

Chapter 2: Definitions and state of the art

bility is achieved in HTTP systems, the central ‘hub’ of the web system.

2.4.1 Load balancing in local scale-out

Inside a virtual server, the incoming requests need to be distributed among the
nodes. The most common way to do this is by assigning one node the special
function of load balancer, receiving the requests from clients and dispatching
them to the other nodes (the webheads). Furthermore, if the web application
needs storage and database systems, they need to be present as well. The
scaling of storage and database systems is discussed in sections 2.3.1 and
2.3.2 respectively.

A load balancer can operate in different levels of the OSI Model[14]. It can
also use different algorithms to decide which webhead to pick, and the inter-
connection between load balancer and webheads can be designed in a few
different ways that have great influence on scalability and bottlenecks of the
system. Furthermore, web services are often state-aware, which requires the
load balancers to be so to. In this section we will discuss common approaches
for each of these four areas.

Layer of operation

A HTTP load balancer receives the requests the clients send by having a
socket on port 80 (the port used for HTTP), and accepting connections and
requests to there as if it were a normal web server. The client and load bal-
ancer first establish a TCP connection (layer 4, transport layer) after which a
HTTP request (layer 7, application layer) is sent by the client[7][13].

The load balancer however can already decide which server to forward the
request to before it is received. As soon as a connection attempt is made by
the client, the load balancer can pick a web server and leave the receiving and
handling of the HTTP request to it. If a load balancer does this, it is operating
in layer 4. This means the load balancer doesn’t even have to evaluate the
actual HTTP request.

Another option for the load balancer is to accept the connection from the client,
read the HTTP request and choose a server based on the contents of the
request. It is then operating in layer 7.

The choice for a layer of operation is closely related to the dispatching algo-
rithm chosen.

22

Chapter 2: Definitions and state of the art

Dispatching algorithms

A load balancer can use a static algorithm to determine which server to dis-
patch a request to, like random or round-robin. However, it can also base its
decision on more factors using a dynamic dispatching algorithm. Factors that
can be weighed in to come to a dispatching decision include:

• Load of each webhead;

• Number of requests each webhead is processing;

• Round-trip time to each webhead (availability);

• State parameters (see ‘affinity’ below)

Many more factors can be thought of. Most of them require the webheads
to give feedback to the load balancer, while with static algorithms the load
balancer can decide on its own.

Affinity

An important issue specific to HTTP which influences how the load balancer
should operate, is affinity. HTTP is a stateless protocol, it does not define a way
for the server to track users across different requests. This feature however is
required by many websites, for example for authentication and preferences.
This problem is usually solved by giving the user a HTTP cookie, a piece of
information it sends with every request it performs from the moment it receives
the cookie, until the cookie expires. The server can store authentication infor-
mation or preferences in this cookie, but for security and performance reasons
usually it only stores an identifier. The actual data is kept on the server and
acessed through the identifier. Since this information is kept on the server (a
specific webhead in the case of a cluster), the user’s requests will need to be
dispatched to that same webhead from the moment it receives the identifier
on. This we call affinity: the relation between a specific server and a client.

A layer 4 load balancer can perform a very basic form of affinity: storing the
dispatching decision it made the first time, and from then on sending every re-
quest from a client to the same webhead. This can be done without knowledge
of the higher-level state information: the cookie. However, it also means that
on a higher level, a session might not be established at all or might have been
destroyed, while the load balancer still bases its dispatching decisions on the
‘state information’ it maintains.

Also, some ISPs use proxy servers to put all the HTTP requests of their clients
through. This means that a very large number of internet users accesses the

23

Chapter 2: Definitions and state of the art

internet through a very small number of IP addresses. For the load balancer,
this means that it might overload a webhead because all the requests coming
from a certain ISP are dispatched to that webhead based on client IP.

Furthermore, an IP address is not unique to a user. Many users may share one
IP address, but sometimes a user can have multiple IP addresses because its
ISP dynamically allocates IP addresses and they change from time to time.
So, while affinity at layer 4 is an easy solution to the state problem, it is not
waterproof.

Taking care of affinity at layer 7 is reliable, since this is also the layer where
the state is important. It is also more complex, and slows down the dispatch-
ing decision by the load balancer. The load balancer now not only needs to
read the HTTP request for its normal decision parameters, but also for state
information. This state information may differ from application to application:
session cookies may have different names or not be used at all.

Network topology

There are several ways to implement a locally distributed web cluster. Cardellini
et al [7] distinguish three types of these systems:

• Web cluster

• Virtual web cluster

• Distributed web system

Although all of them are locally distributed, there are some important differ-
ences between the three. The first, the web cluster, is shown in figure 2.5.

As can be seen, the web cluster uses a load balancer, a function we have
discussed earlier on. This setup is the most common one.

The virtual web cluster is much like the web cluster, in that it has only one IP
address to the outside world, functioning as one big server. As can be seen
in figure 2.6, the virtual web cluster does not have a load balancer. All the
webheads share the VIP (virtual IP), and they all receive all requests. They
have an algorithm for determining who answers to what request.

The last architecture is what Cardellini et al call a distributed web system. This
system uses many IP addresses for the same number of webheads. Request
dispatching is done through DNS: the DNS server simply returns a different IP
address for different requests (figure 2.7). This is the most simple form of load
balancing, the request is ’dispatched’ before it is made.

In a distributed web system, the network layout is simple: the webheads are all
connected to an internet uplink and all have their own IP address. In the virtual

24

Chapter 2: Definitions and state of the art

Figure 2.5: Architecture of a web cluster

Internet

response: 1.2.3.4

Client

DNS server

load balancer
1.2.3.4

webhead 1
10.0.0.1

webhead 2
10.0.0.2

webhead N
10.0.0.N

web cluster, all webheads have a virtual network device that has the VIP. The
web cluster introduces an extra network hop, the load balancer, and according
to Zhang[19], a few designs are possible from there.

Network Address Translation
Using network address translation (NAT), the incoming packets are re-written
and sent out to the local network, to the webhead. The load balancer replaces
the destination IP address (which contains the VIP) with the IP address of
the selected webhead. The webhead processes the request, and since the
load balancer is its default gateway, it sends the response back there again.
The load balancer replaces the source address (which is the address of the
webhead) with the VIP, and sends the reponse back to the client.

IP encapsulation
IP tunneling (also called IP encapsulation) is a technique to encapsulate IP
datagrams within IP datagrams, which allows datagrams destined for one IP
address to be wrapped and redirected to another IP address. This technique is
often used in VPN connections. For our web cluster, this means that the load
balancer maintains a tunnel with each of the webheads. When it dispatches a
requets to one of them, it is sent through the tunnel. The webhead receives the
original packet that the client sent to the load balancer through the tunnel, and
is therefore aware of the client IP address. To send the response, it uses this
address and changes the packets it sends to have the VIP as source address.

Direct Routing
Direct Routing is similar to tunneling. All the webheads have a virtual network
interface configured with the VIP. However, they do not broadcast their address
and don’t use ARP, so the switch they are on is not aware of them having this

25

Chapter 2: Definitions and state of the art

Figure 2.6: Architecture of a virtual web cluster

Internet

response: 1.2.3.4

Client

DNS server

webhead 1
1.2.3.4

webhead 2
1.2.3.4

webhead N
1.2.3.4

Figure 2.7: Architecture of a distributed web system

Internet

response: 1.2.3.2

Client

DNS server

webhead 1
1.2.3.1

webhead 2
1.2.3.2

webhead N
1.2.3.N

26

Chapter 2: Definitions and state of the art

address. The load balancer doesn’t rewrite the IP packet when it dispatches
it, but changes the ethernet address to that of the selected webhead. This re-
quires all webheads and the load balancer to be on the same network together,
at link level. The response is returned in the same way as with tunneling.

NAT is the most simple technique. Nothing needs to be configured at the
load balancers (except for the default gateway, but they need one anyway). A
big disadvantage is that all traffic that flows back to the client must also pass
through the load balancer. Especially in case of large responses (for example,
video files) this can keep the load balancer unnecessarily busy. Tunneling and
direct routing are almost the same. However, tunneling requires more config-
uration work and slightly more computing by all nodes in order to encapsulate
packets. Direct routing is the fastest, but requires all the nodes to be on the
same ethernet network. With tunneling, nodes can be moved around more
since they are connected at IP level.

2.4.2 Load balancing in global scale-out

Global scale-out requires different load balancing techniques than local scale-
out. We could apply the same techniques, however, we would not benefit
from the advantages of global scale-out if we did. For example, if we would
use a web cluster as desribed in the previous section, and place the different
webheads around the globe, clients would still always need to connect to the
load balancer. Therefore, when using global scale-out, dispatching of clients
needs to take place in an earlier stage than their actual HTTP request.

A common way to achieve this, is by using DNS to select a (virtual) server the
client is sent to[7]. A client will perform a DNS request when a URL is entered
into the browser, and the DNS server can use any algorithm it wants to return
an IP address. Also, by using a very low time-to-live (TTL) for the record it
returns, which encourages frequent refreshes of the returned information. In
order to make better dispatching decisions, the DNS server can be aware of
the health and load of the pool of servers it redirects users to. The DNS server
acts as a load balancer with a dynamic dispatching algorithm[4]. The Akamai
case study B is an example of this technique.

Another way to send users to a server near them is by using a “landing page”
where a user selects a country, and is then sent to the server closest to his lo-
cation. This method is referred to as URL redirection. Sometimes this process
is automated by looking up the country the users IP address has been regis-
tered in, or by using the information the browser sends with the request. When
using one of these approaches, the architecture of the distributed web system
is clear to the user since the user is redirected to a different URL. For example,
when one would visit www.example.com from the Netherlands, one could be
redirected to www.nl.example.com. Since this is a different hostname, it would

27

Chapter 2: Definitions and state of the art

resolve to a different IP address, which could be that of the European or Dutch
web cluster for example.com.

28

Chapter 3

The case study application

In the previous chapter we looked at the state of the art in scalability and load
balancing of web applications. This chapter takes a closer look at the case
study at hand: its tasks, requirements and components. The term “visitor” will
be used to refer to someone viewing content, and “authors” to account holders
who edit and create videos using.

3.1 System tasks

Before a solution to the problem can be defined, requirements to the solu-
tion need to be established and the functional components of the system dis-
cerned. We will now examine the tasks the system has to perform in order to
understand the requirements and system components.

As said before, users will use the system to:

• Upload their audio and video materials;

• Edit the materials by combining them with each other and library mate-
rials, adding transitions and titles and re-ordering fragments of material.
These tasks are performed on their computer by the client-side web-
application using low-quality samples of the real materials;

• Download the results of their work and/or have them published to the
online archive.

The uploaded materials are in Windows Media Video (WMV) format or Quick-
time Movie (MOV) from compact camera’s and Digital Video (DV) format from
camcorders. DV material is the largest in size, about 100 MB per minute.
These materials need to be transcoded to low-quality Flash Video (FLV) for

29

Chapter 3: The case study application

the client-side application to work with. The web application performs this
transcoding and also keeps the high-quality materials for later use.

The materials are stored on the server and linked to the authors accounts.
The authors will then over a period of time log in incidentally and edit their
materials, perhaps adding more to their library. After a while, they will have
produced a decision list of actions that must be applied to the high-quality
materials in order to produce the desired result. When they have arrived at this
point, they will give the system the command to produce the final result, and
the system will decode, edit and encode the bits of material into a final video.
It is not yet clear what will be done with this final video. It might be downloaded
by the users, placed on a website, sent to them on DVD or anything else.
For this research we will assume that the video will be placed on the website
(and viewed there). This website is similar to YouTube, visitors can view the
productions of the authors and comment to them. It will also have community
functionality like user profiles et cetera.

At a more detailed level, the system will have to perform the following tasks:

• Allow for visitors to watch video productions;

• Allow for visitors to create an account;

• Allow for authors to edit their profile/information;

• Authenticate authors;

• Allow for visitors to view author’s pages and interact through comments/messages;

• Transcode and store audio/video materials uploaded by authors;

• Offer the authors a web application for video editing;

• Offer the authors a library of audio/video materials;

• Produce videos from the uploaded materials and library materials ac-
cording to a decision list;

• Offer the produced results for download and viewing through the website

3.2 Requirements

In order to measure wether a solution to the scalability problem is scalable, we
will need to have criteria the system must meet. These criteria come from the
commissioner, and Furthermore BV. The requirements we place on a solution
in order to be valid, should guarantee that the objective is satisfied: clients are
served. So, the requirements are a list of the conditions that makes that users
can be served. These requirements are:

30

Chapter 3: The case study application

1. Responses to requests to the community site must be delivered within:

• 1 second for 90% of the requests

• 2 seconds for 98% of the requests

• 30 seconds for 99.5% of the requests

2. Every visitor viewing a video should be given at least 70 KB/s bandwidth.
This ensures that loading a video doesn’t take too long;

3. Every video should be compiled on the server in a reasonable amount of
time. This amount of time is at most the video length plus 30 minutes.

The system is not required to be able to scale out infinitely. The commissioner
nor Furthermore BV have hard requirements on the maximum size, but if the
application does extremely well it will have to be able to serve 100.000 users
per day. When validating the design in the validation phase we will use this
number to validate if the system can scale-out far enough.

3.3 Components

Now we will discern the functional system components, in order to be able to
map them to physical components later. These components are parts of the
system with a unified task or function, which can be separated of the rest of
the system to some extent. These components can use different approaches
to scalability. The components are:

• HTTP service
The clients access the web application through HTTP servers. These
servers run the server-side application, retrieve and store data from and
to the database and storage components, and send the results back to
the client.

• Client application
The client application is downloaded from by the client through the HTTP
service and run on the client computer. It communicates with the HTTP
service.

• Database
The database contains all data except for static content and audio/video
files. Information about users, videos and the dynamic content of the
web pages is stored here.

• Video processing
Videos must be converted, edited and stored. The part of the system
that handles the audio/video editing tasks can be seen apart from the
rest of the system.

31

Chapter 3: The case study application

• Storage
The audio/video files (library materials, uploaded materials and results
produced) and other content (client application, materials for the website
such as images and stylesheets) are stored here so HTTP service can
access them.

Figure 3.1: System components and relations

Database

Storage

Video processing

HTTP serviceClient application

Data centerClient computer

32

Chapter 4

System design

In this chapter we describe a design that meets the scalability requirements,
as well as the other requirements. We describe the design as a whole, and
then discuss the specific choices made for each of the components.

4.1 Overview

Figure 4.1: Architecture

Load Balancer Load Balancer

Webserver n

HTTP service

Webserver 1 Webservers 2..n-1

Video processing

Master database
server

Slave database
servers 0..n

Database

Storage system

Storage

Webservers 1..n

Video hosting

The complete design is shown in figure 4.1. It contains all the components dis-
cussed earlier, except for the client application, and adds extra components.
The client application, from a scalability perspective, is not relevant to the de-

33

Chapter 4: System design

sign of the system since the number of clients increases linearly with the num-
ber of client applications. Therefore we will leave it out of the design.

The figure shows the HTTP service and video processing component behind
one load balancer. The boxes for the video processing component and the
HTTP service have overlap, sharing some servers. The load balancer deter-
mines how many servers should be for video processing and how many for the
web service and assigns based on current demand. The servers have only
one role at any time, but this role may change as demand changes.

The components are linked together by a high-capacity local network, the black
lines. This can start with a 100mbit network and be increased as demands
increase. Currently, 10Gbit networks are available though expensive.

The solution uses a separate component voor video hosting. Video content is
streamed to clients by this component instead of by the server-side application
component. Figure 4.2 shows the setup in case geo-distribution is necessary.
This shows the use of the video hosting component, which will be discussed
in more detail in section 4.3.

4.2 HTTP service component

In figure 4.1 the video processing component has an overlap with the HTTP
service component and is located behind the same load balancer as the HTTP
service is. This shows that the video processing component and HTTP service
are using the same servers.

This works as follows. At any time, there is a pool of x servers available. Of
these servers, n ≥ 1 are designated webservers for the HTTP service, and
x − n ≥ 1 servers are designated video processing servers. Once the load
changes, and a larger amount of servers is required to serve HTTP requests
to visitors, n can increase, re-assigning video processing servers to the HTTP
service. When the visiting peak is over, servers can be re-assigned to the
video processing component. Also, the compilation of videos does not need to
take place right after the user requests it: there is a threshold that can range
from minutes to days. If for example the threshold is 24 hours and at night
load on the HTTP service is low, more servers could be assigned to the video
processing component to get all the video work done quickly.

The re-assigning of servers will be done by the load balancer, since it can
monitor the number of incoming requests. It will need to retrieve the load from
the video processing servers (and perhaps from the webservers, depending
on the criteria used for re-allocation).

Load balancing must be done at layer 3, the network layer. The session in-
formation must be stored in the database by the webservers. A client can be

34

Chapter 4: System design

served by server 1 for his/her first request and by server 2 for the second since
both webservers can read and update the session information. The load bal-
ancer is oblivious to this statefulness. Central session storage is necessary
since a webserver can suddenly disappear from the HTTP service when it is
re-assigned to the video processing component. No user sessions will suffer
from this reassignment with this approach. Layer 7 load balancing could be
used in combination with central session storage to solve the same problem,
but then load balancing at layer 7 would not add value since it doesn’t mat-
ter which webserver serves the request. It would cost resources of the load
balancer, so we choose layer 3 load balancing.

By choosing this design we introduce a possible bottleneck: the load balancer.
When web servers are added, the capacity of the load balancer is not scaled.
We assume this does not limit scalability in practice for applications similar to
our case study, since the requirements on the resources of the load balancer
are very low. This assumption will be validated in the validation phase.

Combining the hardware for HTTP service and the video processing does not
increase scalability. It does however provide a solution for applications that
require heavy processing capacity to utilize their hardware more efficiently than
when the hardware of these components would not be combined.

4.3 Video hosting component

This component is new compared to the components described in chapter
3.3. The video hosting component sends video files to visitors viewing videos.
When a visitor visits a page on the website that includes a video, the video
itself will be loaded from the video hosting component. In other words, it only
serves HTTP requests for the individual video files. These files are stored in
the storage component.

The component includes a load balancer (layer 3, affinity is not required) to
spread the load across multiple webservers.

By using this component, the HTTP service component does not have to deal
with the video files. Requests for video files are very different from other HTTP
service requests, since they require little server-side processing but have a
long transmission time to the client. HTTP service requests are generally small
in size, as are the responses (compared to video files), but they require much
more work on the server. Separating these types of requests allows for more
effective load balancing, since requests are more equal in resource usage.
The real use of this component however, becomes visible when the content
must be made accessible from more locations. One can take a copy of the
video hosting component, include a storage system in it that receives updates
from the main storage system, and place it somewhere else (for example, in

35

Chapter 4: System design

another country using global scale-out). In this way, new content travels to
this location only once, and is served to visitors there from the “satellite” video
hosting component. These visitors would still have to use the central location
for browsing of other pages and video-editing however. An example of this
setup is shown in figure 4.2.

The usage of this component also makes it possible for the owner of the sys-
tem to use multiple colocating/hosting parties with different uplinks (and prices)
for the core system and the video hosting service. It increases the scalability
of the total network throughput capacity of the system: there doesn’t need to
be a single transit uplink that has enough capacity for the whole system; two
uplinks can be used (one for the core system and one for the video hosting
component). Also, clients can be forced to use a certain video hosting com-
ponent by the HTTP service; which video hosting component the will use is
based on what URL they get for the video file from the HTTP service.

For this load balancer we also assume that its inability to scale will not be a
problem. We will validate this assumption in the validation phase.

4.4 Video processing component

The video processing component consists of one or more servers runing soft-
ware that performs video manipulation. This software reads the video data
from the storage component, and the actions that must be performed from
the database component. Jobs for this component are added in a queue in
the database by the HTTP service, and processed by the video processing
servers on a FIFO basis.

We chose to create a separate component for this task since having a com-
ponent with only this single task makes it very simple to implement and scale.
Would we have assigned this task to the HTTP service servers, where the re-
quests are received, load balancing would become much more complex. A
webserver would become unresponsive to HTTP requests as soon as it had a
video processing task. As for scalability, since there is no centralized element
in the component, it scales by adding more servers.

4.5 Database component

The database component consists of multiple servers; one master and the
rest slaves. The write queries (INSERT, UPDATE, DELETE) go to the master
server, the read queries (SELECT) which are by far more in number than write
queries, are distributed over the slave servers.

36

Chapter 4: System design

Figure 4.2: Extended architecture

Location A

Load Balancer

Webserver 1..n

Location B

Storage system

Load Balancer Load Balancer

Webserver n

HTTP service

Webserver 1 Webservers 2..n-1

Video processing

Master database
server

Slave database
servers 0..n

Database

Storage system

Storage

Webservers 1..n

Video hosting

Video processing Storage

Load Balancer

Webserver 1..n

Location C

Storage system

Video processing Storage

37

Chapter 4: System design

Among the options were this setup (master-slave replication), a database clus-
ter (like mysql cluster) and data partitioning (all discussed in section 2.3.2). We
have selected the master-slave replication setup since we assume that it pro-
vides enough scalability for the case study and doesn’t have the complexity of
a cluster setup. We assume that a master that only parses writes, in a web
application (which typically have very little write queries), can be scaled using
hardware scale-up enough in order not to become a bottleneck. In the unlikely
situation that is becomes a bottleneck, a second master can be added which
synchronizes with the first master using master-master replication. All queries
will still be executed on both masters, but with relaxed timing to gain perfor-
mance. Our assumptions regarding the master server will be validated in the
validation phase.

4.6 Storage component

For a storage system, there are several options: simple NFS servers using
data partitioning, commercial NAS and SAN systems, and a scalable software
solution using general-purpose servers.

We looked into a scalable software solution using open source clustered filesys-
tems, but found these implementations too immature to be used in production
environment. Data partitioning could be a solution, but has important draw-
backs as discussed in section 2.3.1.

We reached the conclusion that the storage must be handled by a storage
product that natively offers possibilities for scaling. More specificly, it should of-
fer the possibility to bundle multiple storage system together in a load-balancing
kind of setup (scale-out). An example of such a product is Netapp’s line
of products using their Data ONTAP GX operating system. This version of
the Data ONTAP operating system supports pooling multiple storage systems
from the FAS series (FAS3000, FAS6000) into one virtual storage server with
load balancing. Virtualization is done on NAS level: the clients connect to
a virtual NAS server consisting of multiple FAS systems, much like a virtual
HTTP server with HTTP load balancer. Another candidate is HP PolyServe’s
FSU system. This system achieves virtualization in the accessing servers, on
filesystem level, using a clustered filesystem.

These products are scalable in the desired way, and offer many more features
like synchronization with other locations (for example, when using off-site video
hosting components with their own storage), snapshots, backups, redundancy
and more.

38

Chapter 5

Validation of the solution

The design specified in the previous chapter needs to be validated in order
to make sure that it indeed meets the requirements. In this chapter we will
describe the process of validation and the results.

5.1 Approach

After validation, we should be sure that the design meets the requirements.
The first of these requirements is the scalability requirement. From the litera-
ture research (chapter 2.1):

Our architecture is scalable if it has an at least linear increase in
users that can use the system as hardware is added.

To validate this requirement, we will use the following approach. First we will
create a prototype of the system, following the design from chapter 4. We
will then measure how many users can use the system by simulating user
interaction. Should we now double the amount of hardware, we should be able
to serve around twice the amount of users. So, we will create a prototypes of
the web application and simulate the users.

In order to measure how many users the system can serve, we will use the
criteria from chapter 3.2. These are:

1. Responses to requests to the community site must be delivered within:

• 1 second for 90% of the requests

• 2 seconds for 98% of the requests

• 30 seconds for 99.5% of the requests

39

Chapter 5: Validation of the solution

2. Every visitor viewing a video should be given at least 70 KB/s bandwidth.
This ensures that loading a video doesn’t take too long.1

3. Every video should be compiled on the server in a reasonable amount of
time. This amount of time is at most the video length plus 30 minutes.

We will start with a small number of users, and then increase until either the
response times are too high, the bandwidth cannot be given to users or video
compilation takes too long.

Of course, the linear increase between hardware and number of users served
cannot go on perpetually; every system will encounter some bottleneck (even
if it be available space on our planet). We need to know which potential bottle-
necks there are, and estimate if they will be a problem if our design would be
implemented.

To locate potential bottlenecks, we will monitor different aspects of the system
during the testing. To get as much data as we can on potential bottlenecks,
the performance of all servers (CPU utilization, disk throughput and network
throughput) will be monitored. When the testing is finished, we will analyze at
this data to see if bottlenecks existed in the system, or if parts of the system
are likely to become bottlenecks.

5.1.1 Prototype of the system

To validate the design, we need to either model the design in a simulator or
prototype it. The advantage of prototyping over simulation is that the prototype
is more likely to resemble a real-world system since it contains similar com-
ponents. In a simulation, not all side effects can be taken into account, while
in a prototype they will surface. This is also the drawback of prototyping: not
all side effects that show in a prototype are relevant, because in the ‘real’ sys-
tem they might be different. However, we have chosen to create a prototype.
The scope of this project is limited, and since we already have much of the
knowledge needed to setup a cluster of servers, prototyping will be faster than
simulating. We have explored the simulation possibilities, and did not find a
simulation tool with features for modelling servers ánd the network instead of
just the network.

Also, in order to find potential bottlenecks that we didn’t think of ourselves, a
simulation or an analytical model would not suffice.

For practical reasons we are leaving some components out of the prototype:
the storage system and the video hosting component. The storage system
for instance cannot be prototyped without using a special storage hardware,

1This requirement will be dropped, see section 5.1.1.

40

Chapter 5: Validation of the solution

which is not available for this research. If we would replace this component with
normal hardware and lower the load on it, we could include it in the prototype,
but it wouldn’t tell us anything about the real scalability of the system.

Also, the dynamic aspect of the server-side component, assigning servers dif-
ferent roles according to the needs at the moment, is left out. It does not affect
the scalability of the application, it only increases server utilization (efficient
use of the resources) and costs extra time and effort to implement.

Also, the video hosting component will be left out of the prototype. It functions
separate from the rest of the system. This component would primarily interact
with the storage component, which is being left out. Furthermore, it functions
in the same way as the HTTP service: a load balancer with websevers behind
it. Due to pratical limitations (availability of time and servers) we have to keep
the prototype small. By looking at the server-side application we can see if the
load balancing setup indeed can serve twice the amount of users with twice
the amount of hardware. Since the video hosting component will be omitted
from the prototype, we also drop the bandwidth requirement. Video files are
downloaded from this component, so bandwidth should be guaranteed by it.

Summarizing, our validation concerns the database component, the video pro-
cessing component and the server-side application component. The prototype
for validation is shown in figure 5.1.

Figure 5.1: Prototype components

Load Balancer

Master database
server

Slave database
server(s)

Database

Webserver(s)

Video processing

Webserver(s)

HTTP service

41

Chapter 5: Validation of the solution

Hardware setup

The machines used for the prototype are all identical. They each have a 800
MHz Pentium III CPU, 256 MB RAM and a 16 GB SCSI harddrive. The sys-
tems all have Debian GNU/Linux installed on them, with debian-patched kernel
version 2.6.18-5-686. No modifications have been made to the OS, other than
the IPVS kernel module on the load balancer.

All machines have a 3com 3c905C network card, connecting them to an HP
ProCurve 2626 managed switch.

The Apache version used on the web servers is 2.2.3. The database servers
use MySQL version 5.0. The version of ffmpeg used on the transcoding servers
is SVN-r10959.

The visitor simulation application is run on a Apple Macbook with a 2.4GHz
Intel Core 2 Duo CPU, 4GB of RAM and a 250GB harddisk. It is connected to
the same switch as the test machines.

Database component

The database component is prototyped according to the design using a master-
slave replication system. The software used is the open source database
server MySQL. The first setup will include one master and one slave, for the
second setup a slave will be added. Strictly this does not double the hardware
but this is the way the database system scales up with respect to the amount
of reads it can handle, leaving the master as a potential bottleneck.

Video processing component

The video processing component is prototyped by a PHP script which invokes
“ffmpeg”, an open source commandline video transcoding and editing tool.
The script reads what needs to be done from the queue in the database, loads
the video file from the harddisk of the processing server (since the storage
component isn’t prototyped) and writes the result back there. The script is
periodically executed by each server. In the first setup one server will run this
script, in the second setup there will be two.

The video processing component needs to perform two different tasks: transcode
uploaded materials into low-quality FLV files and combine a lot of uploaded
materials into one FLV file for the final video file a user creates. The exact
input and output for the video processing script does not really matter, since
the output of the video processing component is never used in the prototype.
One video file is used as input to both tasks. To simulate video transcoding, it
is transcoded to FLV once. To simulate creating the final video, the same job is

42

Chapter 5: Validation of the solution

run three times. This may not be an accurate representation of the compilation
of a video project, but in our test it matters only that load is generated by users,
and that twice the amount of users will generate twice the load.

HTTP service component

The server-side application component is prototyped by a PHP program which
simulates typical CMS behaviour. It performs a number of heavy SELECT
queries on the database, inserts some data into the database, creates PHP
objects and variables, modified some video-metadata and includes other PHP
files. This PHP application runs on a single web server behind a load balancer
in the first setup, and on two webservers in the second setup.

5.1.2 Simulation of the users

Users, from the perspective of this system, can be defined in two types: visitors
and authors. Visitors are those who access the community website and view
videos. Authors create content by adding their own materials and combining
library materials into new videos.

Both user types need to be simulated. The client-side application however
does not need to be simulated, neither does its usage. Since the number of
users is per definition in linear relation with the available hardware for the client
application, we can omit it. The downloading of the client application from the
server-side application and the sending and processing of requests from the
client however needs to be included in the simulation.

We have written a Java program that simulates users and logs the timing
results. It sends requests to the server-side application, waits for a certain
amount of time, and then sends a request again to simulate a browsing user.
To simulate multiple users, multiple threads are used. Using Java on Mac OS
X, about 1000 threads can be created without a problem. For a higher number
of users, two instances of the program must be run. A user viewing videos
is simulated using the same program, but by changing the request URL. An
author is simulated also by changing the request URL. An author will down-
load small FLV video files every now and then, and request transcoding of
files. Also, the program uploads video files to simulate authors submitting new
content. The program limits the throughput to simulate the bandwidth a nor-
mal client would have (typically between 50 and 100 KByte/s upstream). Each
thread uses a unique IP address on the LAN to avoid host-based restrictions
like number of requests and throughput.

We have to make estimations for the numbers of users of different kinds that
will be online at the same time and how often they will request content during

43

Chapter 5: Validation of the solution

normal usage. We want to know if the application is scalable in the way we
want it to, so the question at hand is if the way in which we model the users
affects the scalability. If we estimate that for every author online there are
about 100 viewing users online, we will get a higher load on the server-side
application than if we say there are only 50. This doesn’t affect the scalability
of the system; it will only change the bottleneck for serving more users.

5.1.3 Testing parameters

We need to establish testing parameters: what values we will choose for the
variables in the testing sequences. The value of Vmax will be determined prior
to the test runs.

Single hardware setup

Number of visitors (= n): Vmax

Number of authors: 1
40 · n

Visitor delay between website requests: 10 seconds
Visitor delay between video requests: 5 minutes
Author delay between video finalize requests: 60 minutes
Author delay between requests for upload & transcode: 10 minutes

Double hardware setup

Number of visitors (= n): 2 · Vmax

Number of authors: 1
40 · n

Visitor delay between website requests: 10 seconds
Visitor delay between video requests: 5 minutes
Author delay between video finalize requests: 60 minutes
Author delay between requests for upload & transcode: 10 minutes

5.1.4 Test data

The database system must be filled with test data in order to run tests. We
created test data representing users. This test data consists of tables and
records for projects, comments on videos, and user profiles including pictures.
The amount of testdata matches the number of users currently being tested
(total of users of the system, not users concurrently online). This is important,
since a database system is under much heavier load when it has to combine
two tables of each 1000 records than with tables of 500 records.

44

Chapter 5: Validation of the solution

For video conversion, a Quicktime video file of 3 minutes and 20 seconds.
Its video stream is encoded with MJPEG at 640x480 with 30 frames per sec-
ond, the audio stream with PCM 8 kHz mono. We assume it resembles a
typical home video in codecs, size and quality. Video was converted to FLV
format, 25 frames per second, with 64 kbyte/s audio in MP3 format at 22050
Hz. For future reference, the complete ffmpeg command used for transcoding
is: ffmpeg -i <infile> -vcodec flv -r 25 -ar 22050 -sameq
-y <outfile>

5.1.5 Accuracy

The prototype is very rough, and the environment on the linux machines plays
a role in the performance on the systems. During tests, all kinds of system
processes can start to claim resources leading to higher response times. Ide-
ally, we would run the tests for a long period, preferrably at least 5 hours to
balance the effects of system jobs requiring system resources. Due to time
constraints for this research, we will run each tests 3 times for half an hour. If
the 3 tests are too diverse to draw conclusions, we will run more tests. By ‘too
diverse‘ we mean that the results show flapping: some of the tests fail to pass
the requirements while some do, and the largest difference between results is
more than 10%.

Furthermore, preliminary tests have shown that the cluster will probably ser-
vice a very small number of users; somewhere around 50. The differene be-
tween 50 and 51 users is insignificant; we will consider differences from 5%
up.

5.2 Results

In this section we will discuss the measurements taken on the prototype.

5.2.1 Hardware setup 1

The figure shows the response times for the first test. The first column shows
the response time in ms that 90% of the responses were received in, the sec-
ond column shows the same for 98%, and the last for 99.5%.

On the single hardware setup tests were run with an increasing number of
users until a limit was reached. The videos were transcoded in time for all of
the tests. This was verified by inspecting the transcoding queue after each
test. The HTTP response times are shown in figure 5.2.

45

Chapter 5: Validation of the solution

Figure 5.2: HTTP response times setup 1
90% ≤ (ms) 98% ≤ (ms) 99.5% ≤ (ms)

45 users (1) 836 1316 1837
45 users (2) 821 1317 1827
45 users (3) 779 1138 1466
47 users (1) 924 1368 1833
47 users (2) 910 1387 1836
47 users (3) 987 1494 2045
49 users (1) 1046 1600 2315
49 users (2) 1000 1502 2066
49 users (3) 1063 1676 2373
50 users (1) 1127 1784 2537
50 users (2) 1137 1733 2511
50 users (3) 1158 1765 2590

From this data we learn that the system can serve at most 47 users at a time.
For 47 users, all three tests show response times within limits, while for 49
users the response times exceed the limit of the 90% requirement. We haven’t
tested with 48 users, but as described in the previous section, this difference
is insignificant. We will test if the second hardware setup can serve 94 users.
We don’t need to test other amounts of users, since we have an answer to the
scalability question if the second setup can server 94 users.

During the test, due to an error the transcoding times of videos weren’t saved
while they should have been to validate the requirements. However, the transcod-
ing times were saved in the second setup with double the amount of hardware.
We have decided not to re-run the first test to obtain this data, for the follow-
ing reason. There are two options for the queue times: either they were okay
and the bottleneck to the number of users is the 90% HTTP response time re-
quirement, or they were not okay and we could serve actually less users than
the 47 as determined by the HTTP response times. Either way, if the second
setup can actually serve 94 users in both HTTP response times and queue
times, this proves our solution is scalable. In the first case it is clear; the HTTP
response times were the bottleneck for the first test. In the second case, the
bottleneck should actually have been reached earlier: we should be serving
less than 94 users since the queue times didn’t meet their requirements. By
serving 94 users successfully anyway we show that our solution is more than
scalable.

5.2.2 Hardware setup 2

The length of the video sample used for conversion is 3:20. It is transcoded
three times to resemble compilation of a larger video file. The requirement

46

Chapter 5: Validation of the solution

Figure 5.3: HTTP response times setup 2
90% ≤ (ms) 98% ≤ (ms) 99.5% ≤ (ms)

94 users (1) 948 1388 1903
94 users (2) 946 1543 2567
94 users (3) 903 1284 1656

Figure 5.4: Video queue times setup 2
Time(s) Time(m)

94 users (1) 1110 19
1594 27

759 13
94 users (2) 1605 27

779 13
94 users (3) 1236 21

746 12
1566 26

is that video files be compiled within 30 minutes plus their length, so for this
sample that is 40 minutes.

The HTTP response times for the second test setup are shown in figure 5.3.
The times the video processing component took to process transcoding re-
quests, are shown in figure 5.4. Each row represents a request in the queue.
These times are only the times for requests by authors for compilation of a
video. The video processing component was also busy with transcoding up-
loaded files, which was a much lighter task. Since we did not set requirements
for this task, the results aren’t shown here. Not every test run generated the
same amount of requests due to random intervals between requests. The time
in seconds in the first data column is the time between insertion in the queue
and completion of transcoding of a video file. The time between transcoding
start and transcoding end is not relevant and thus not shown. The time in
minutes is rounded, and only there for easier reading.

From this second testrun we learn that doubling the amount of hardware en-
ables the system to serve twice the amount of users while staying within speci-
fied limits for response times and queue times. We need to look at bottlenecks
before we can conclude that the design is scalable.

5.2.3 Bottlenecks

There are a few elements of the prototype that were not scaled between setup
1 and setup 2. They are by design not scaled, although they enabled scal-
ing of other parts of the design. These elements are the load balancer, the

47

Chapter 5: Validation of the solution

master database server and the network itself (network interfaces, cables and
switches). To see if these elements could become a bottleneck, we monitored
the state of all the servers during the test runs. By state, we mean CPU, disk
throughput and network throughput.

We cannot draw hard conclusions about these bottlenecks. If their resource
usage was very high during the tests, we can conclude that the system cannot
scale to the double amount of users again, and thus for sure is not scalable
enough. If however the resource usage of the load balancer and database
master server is low or normal, we cannot draw conclusions on how far the
system could scale out.

A way to still give an idea of the scalability limits (and idea, not a definite
answer) is by looking at web application which use similar setups for these
components, and serve large amounts of users.

Load balancer

Figure 5.5: Load balancer CPU load with 47 users

14:30 14:35 14:40 14:45 14:50 14:55

 0.0

 1.0

 2.0

 3.0

 4.0

l
o
a
d

R
R
D
T
O
O
L

/

T
O
B
I

O
E
T
I
K
E
R

 100% System load

Figure 5.6: Load balancer CPU load with 94 users

15:55 16:00 16:05 16:10 16:15 16:20

 0.0

 1.0

 2.0

 3.0

 4.0

l
o
a
d

R
R
D
T
O
O
L

/

T
O
B
I

O
E
T
I
K
E
R

 100% System load

As for the load balancer: figure 5.5 and 5.6 show the CPU usage during one of
the tests in round 1 and one of the tests in round 2. The vertical axis indicates
the load, the horizontal axis the time. In Unix terminology, load is defined in

48

Chapter 5: Validation of the solution

number of processes having to wait for execution time. So, a load of 1.0 (the
red line) indicates that one process is waiting for CPU access. At this point the
system is considered to be ‘full’ although it can continue to accept more load.
From this point on however, processes will suffer under the load as they have
to wait.

Figure 5.7: Load balancer network throughput 47 users

14:30 14:35 14:40 14:45 14:50 14:55

 10 M

 16 M

b
y
t
e
s
/
s

R
R
D
T
O
O
L

/

T
O
B
I

O
E
T
I
K
E
R

 100mbit In traffic Out traffic

Figure 5.8: Load balancer network throughput with 94 users

15:55 16:00 16:05 16:10 16:15 16:20

 10 M

 16 M

b
y
t
e
s
/
s

R
R
D
T
O
O
L

/

T
O
B
I

O
E
T
I
K
E
R

 100mbit In traffic Out traffic

The disk showed no significant activity at all during both tests.

The network activity is remarkable (figures 5.7 and 5.8). During the first round
of tests, none of the graphs showed network usage. During the second round,
the usage was significant. I have no explanation for this other than an error in
the measurements during the first test round. The red line in the graphs shows
the maximum throughput (theoretical maximum) of the network interfaces.

Database master

The CPU load of the database master is shown in figures 5.9 and 5.10. As can
be seen in these graphs, the load was very low. The disk activity and network
activity were close to zero (not visible in graph).

49

Chapter 5: Validation of the solution

Figure 5.9: Database master CPU load with 47 users

14:30 14:35 14:40 14:45 14:50 14:55

 0.0

 1.0

 2.0

 3.0

 4.0

l
o
a
d

R
R
D
T
O
O
L

/

T
O
B
I

O
E
T
I
K
E
R

 100% System load

Figure 5.10: Database master CPU load with 94 users

15:55 16:00 16:05 16:10 16:15 16:20

 0.0

 1.0

 2.0

 3.0

 4.0

l
o
a
d

R
R
D
T
O
O
L

/

T
O
B
I

O
E
T
I
K
E
R

 100% System load

5.3 Discussion

We have created a prototype of the design for validation, we have run tests
on it and gathered and analyzed the results. We will now discuss what can
be learned about the scalability of the prototype (and thus part of the design)
based on these tests.

We have seen that doubling the amount of hardware leads to twice the user
capacity. Response times stayed withing limits when placing twice the load on
the system. As for video compilation times, in the second setup the compile
times were within the requirements which means that we probably could have
had more users as far as the video processing component is concerned, since
the HTTP response times were the bottleneck in adding users.

As for the bottlenecks, we can conclude from the graphs that a load balancer
of equal hardware as the web servers, can service 2 web servers while keep-
ing its CPU load below 0.1 (as visible in figure 5.6). This means that for the
load balancer to reach a load of 1.0, we would need 20 webservers in this
setup (assuming a linear increase in load). A safe estimate of the performance
increase that could be realized by software optimization is 50%, changing the
number of servers to 30. The estimate is inaccurate because the optimization

50

Chapter 5: Validation of the solution

has not been tested or theoretically explained, and the linear increase between
load and webserver is also untested and unexplained. A 50% performance in-
crease due to optimization seems very high, but the OS can be finetuned to
perform this specific task at the cost of other tasks in multiple ways (process
priority, preemptive resource management, stripping of other tasks/services).
As for the network throughput, this potential bottleneck can be put out of range
by using a 1Gbps network instead of 100Mbps.

Apart from this rough estimate, we can look at other real-worlds examples
of this setup. Slashdot (case study in appendix A) is an example of a large
web application (3.000.000 pageviews per day on weekdays) using HTTP load
balancing. We estimate our case study application will have to handle about
500.000 pageviews per day: 100.000 users, each viewing 5 pages. Slashdot
uses a single load balancer to distribute the requests among 16 webservers.

For the database server, the load is low as well. How many users could be
served on the current hardware is again impossible to tell accurately. How-
ever, based on the load with 94 users, showing load peaks of 0.2, the system
should be able to handle 5 times the amount of users (470) while incidentally
peaking to 100% load. Looking at an example again, Slashdot uses two mas-
ter database servers replicating each other. However, all the write queries
are directed to one of them (the master-master setup is for safe failover) so
effectively they use one master server, as is done in our design.

So, the potential bottlenecks in our design didn’t turn out to limit scalability
during the tests, and are also not likely to limit scalability until the application
surpasses an application like Slashdot in size.

51

Chapter 6

Conclusions

This research started with the following question:

How could web applications for online video-editing be designed in
terms of application architecture in order to be highly scalable?

A number of sub-questions were stated in order to answer the research ques-
tion:

• What are the definitions and state of the art of scalability and web appli-
cation distribution?

• What are the requirements and characteristics for scalability in the case-
study?

• How could the application be designed to be scalable to the extent in
which it is required in the case study?

• Can we identify potential bottlenecks and verify the scalability of the pro-
posed design using measurements made on a prototype of the proposed
design?

We will now discuss how these questions were answered in the previous chap-
ters.

What are the definitions and state of the art of scalability and web appli-
cation distribution?

In chapter 2 several existing approaches to scalability and web application
distribution were discussed. Different components of web applications are de-
signed to be scalable in different ways. For components that provide read-only

52

Chapter 6: Conclusions

acess to resources (such as web servers typically do) load balancers play an
important role. They distribute the requests among the participating nodes,
based on different kinds of conditions. For read-write components such as
database and storage, simply distributing requests among the participating
nodes does not suffice; there needs to be some form of synchronization be-
tween the nodes. Different approaches to this problem were discussed.

What are the requirements and characteristics for scalability in the case-
study?

This question was answered by examining the case study: its tasks, the re-
quirements that are placed on it by the commissioner and Furthermore BV,
and its components. These components determine the scalability characteris-
tics since different types of components require different approaches to scala-
bility.

How could the application be designed to be scalable to the extent in
which it is required in the case study?

A design was presented in chapter 4, using approaches found in the literature
study and some custom additions that improve scalability or performance in
the type of web application that is being researched.

Can we identify potential bottlenecks and verify the scalability of the pro-
posed design using measurements made on a prototype of the proposed
design?

The scalability of the design was validated in chapter 5. We concluded that
a prototype implementing our design is scalable. When doubling the amount
of hardware in the prototype, the amount of users that can be served also
doubles. Bottlenecks in scalability were not reached, but potential bottlenecks
were identified.

In order to answer the research question, there is one more step we need to
make. The fact that the prototype is scalable and does not encounter bottle-
necks in our test, does not guarantee scalability for a larger scale implementa-
tion of the design. So the question is: how far should a system that implements
our design be able to scale out in order to be called scalable? This question
cannot be answered by the definition of scalability; we will answer it using our
case study.

Extrapolation of the testdata showed how far the system could be scaled up
before the different bottlenecks would be reached. By comparing this scaling

53

Chapter 6: Conclusions

space to a large webapplication currently in use, the conclusion was drawn
that this scaling space would be sufficient for the case study application.

This conclusion is untested. Where the limit in scaling of the design lies exactly,
is not determined by the validation phase nor will we explore it here. Based on
this research the conclusion can be drawn that the design is scalable with a
limit, and that the case study application is not likely to reach this limit.

A larger application, for example something the scale of Youtube, could not
use our design. Bottlenecks that would be reached first are the load balancer
and the database master server. However, for web application for online video-
editing somewhere between the size of the case study and Youtube, the design
is scalable. Where this limit lies depends on many factors, and is hard to pre-
dict on beforehand. Some recommendations will be made in the next section
to enlarge the scalability window.

The conclusion from this research is that for web applications with high de-
mands on processing power, storage and throughput, such as applications for
online video editing, scalability can be achived, with an unknown but existing
limit, using the design presented in this research.

6.1 Recommendations

In the case that bottlenecks in the scalability of the system would be reached,
the system is designed modular enough to replace individual components to in-
crease scalability. Recommendations will be made for replacing the database,
storage and network components. Furthermore, we will show how the system
as a whole can be virtualized for a low-cost implementation.

Database

The database component could be replaced with a clustered database. Vari-
ous database manufacturers offer software to do this. An example is the Clus-
ter edition of the popular open source MySQL database, described in section
2.3.2.

Storage

For the storage system, there are many ways to scale. The way included in
the design is by accessing the storage on file-level as a NAS, and bundling
multiple storage systems together behind this NAS. Another possibility, one
with greater throughput, would be to use a SAN (Storage Area Network): net-
worked storage on block level instead of file level. A SAN is typically accessed
by iSCSI (SCSI over TCP/IP) or, for even more throughput, Fibre Channel.

54

Chapter 6: Conclusions

Network

We recommend that the implementation of the design use a 1Gbps network
to begin with instead of 100Mbps. The 100Mbit limit is quickly reached using
central storage, whereas 1Gbps will be enough for a long time.

Virtualization

Furthermore, the number of servers for the initial implementation can be re-
duced by using hardware virtualization. Using a virtualization system such
as Xen or VMware, a physical server runs a number of virtual servers which
behave as normal servers, with even near-native performance. The HTTP ser-
vice component could be virtualized into a single (hardware) server, while still
having the architecture of a load balancer with multiple web servers, making
scaling easier. The same goes for the database component and video hosting
component. When scaling up, an extra physical server could be added, taking
over some of the virtual servers.

55

Appendix A

Case study of Slashdot

In these appendices we will take a look at a few cases of large web applications
and how they handle scalability. The first one is slashdot.org.

A.1 Introduction

Slashdot.org is a website that offers “news for nerds, stuff that matters”. It is a
news site that focusses on news on technology, internet, security and related
issues. Users can submit stories, ask questions and vote for stories which will
then rise in the rankings. Slashdot is owned by Sourceforge Inc. It is difficult
to gather traffic and visitor statistics for slashdot.org, but in the FAQ they state:

Slashdot typically serves 80 million pages per month. We serve
around 3 million pages on weekdays, and slightly less on week-
ends.

Source for this case study is a series of articles by slashdot on their net-
work infrastructure, available at http://meta.slashdot.org/article.
pl?sid=07/10/18/1641203&tid=124.

A.2 Application profile

Slashdot is a news site, which means it contains lots of text data (articles) and
comments. Users can read, comment, search and post. Sine it is mainly about
serving text pages, slashdot is mainly about webheads accessing databases,
and implementing smart caching in between.

56

http://meta.slashdot.org/article.pl?sid=07/10/18/1641203&tid=124
http://meta.slashdot.org/article.pl?sid=07/10/18/1641203&tid=124

Chapter A: Case study of Slashdot

A.3 Infrastructure

The Slashdot network infrastructure is shown in figure A.1. Incoming traffic is
received by the load balancer. What isn’t shown in the picture, is that six of the
webheads have an extra function; they act as layer 7 load balancers. The layer
3 load balancer balances the load among the six layer 7 load balancers. They
dispatch the requests among the webheads according to the requested page.
They also redirect registered users to special servers, granting them a better
response time. The functionality of the website is segregated across servers
so that if a specific part of the website has a performance problem or suffers
from a DDoS attack, the rest of the website will still function normally.

The database system uses a multiple master setup. Two masters replicate
each other. One of them acts as the single write database; it is the only
database queries are written to. Both masters are replicated by a slave. The
webheads select one of these four servers for their queries. The masters can
be switched easily in case of failure; the second master (which is not used for
write queries) can easily be used as write master because it is already config-
ured as master and replicated by a slave and the other master.

The access logs are stored in a separate database server, this is a form of
data partitioning to increase performance. Since slashdot uses the access
logs intensively for moderation and filtering, a separate slave database is used
for read queries from the access logs. Furthermore, a separate database is
used for search queries.

A single NFS server is the storage server for all static content. The webheads
mount it in read-only mode for better performance (no concurrency issues).

A.4 Conclusions

Of the case studies, Slashdot comes closest to a standard web application.
They have a huge number of ’read’ actions compared to the ’write’ actions.
They use the three standard web system components: webheads, database,
storage server. Since the dynamic content is all in the database, the storage
system is read-only. They have solved the challenges that the large number of
visitors bring by using custom software solutions; using open-source software
and own software (that they have open-sourced) they optimize load distribu-
tion. Although their two-level load balancing solution is interesting, we are not
likely to be faced with the same issues in the case study application.

57

Chapter A: Case study of Slashdot

Figure A.1: Slashdot network infrastructure

Static &
public

frontpage

Static &
public

frontpage

Comments Dynamic
homepage

Dynamic
homepage

Other
scripts

Other
scripts

Other
scripts

Dynamic
homepage

Dynamic
homepage

Comments Comments Comments Comments Comments

Storage Server

Load
balancer

HTTPS

Web servers

Master
DB

Master
DB

Slave
DB

Slave
DBSearch

DB Accesslog Slave
DB

Accesslog Master
DB

Database servers

58

Appendix B

Case study of Akamai

In this second case study, we will take a look at Akamai, a Content Distribution
Network company.

B.1 Introduction

Akamai’s core business is to distribute content for their clients. When a com-
pany has a website that attracts many visitors from across the globe, and they
cannot or will not increase their own hosting capacity, the company can hire
Akamai to distribute its content. Akamai provides global scale-out as dis-
cussed in section 2.2.2. Source for this case study is an article by Akamai
on their distribution network [4].

B.2 Application profile

When Akamai distributes your content, you still need to host the content your-
self. Akamai picks up the content from these “origin servers” and takes care
of distribution from there. This makes it easy for customers to change their
content.

B.3 Infrastructure

The simplified Akamai network infrastructure is shown in figure B.1. The ori-
gin server is the system the original content is on, and where it is updated.
When the content changes, the web caches shown in location A and location
B will also be updated. These two locations are datacenters somewhere on
the globe. In the figure there is a client near A and a client near B. When

59

Chapter B: Case study of Akamai

Figure B.1: Akamai network infrastructure

Web cache

Akamai DNS

Web cache Web cache

Status info

Location B

Web cache

Akamai DNS

Web cache

Web cache

Status info

Location A

Origin server

Akamai master
DNS server

Client near
location B

Client near
location A

DNS request

DNS response

DNS request

DNS response

DNS redirect

HTTP request

DNS redirect

HTTP
request

60

Chapter B: Case study of Akamai

they request the hosted content, for example www.example.org, they get
redirected to the Akaimai master DNS server by the .org nameserver (we will
not explain the DNS system in detail here). The Akamai master DNS server
can tell from the clients IP address what its approximate physical location is.
Based on this location, it responds by redirecting the clients request to a name-
server near them: at location A for client A and at location B for client B. This
local Akamai nameserver collects status information on the Akamai webheads
(or clusters) at the location. Based on this status information (health, avail-
ability, load etc) it responds with the IP address of one of the webheads to
DNS requests. These DNS responses have a very low time-to-live (TTL) so
that they will be re-requested soon. When a webhead becomes unavailable
or overloaded, the local DNS server will simply take it out of its list of possible
responses.

B.4 Conclusions

Akamai, as a CDN, is specialized in the global scale-out of websites and web
applications. They use DNS for global load balancing, which can be very
interesting to our case study. Their local scale-out method also uses DNS,
which might be less suitable to our case study. In our case, we probably need
more fine-grained control over the load balancing process than DNS (with its
caching) can offer.

61

www.example.org

Appendix C

Case study of Google Search

The last case study is on Google Search, the most well-known service of
Google Inc.

C.1 Introduction

In the early 2000’s, Google became very popular for its internet search ser-
vice. Though there were already many search services, Google managed to
become the number one search site. Part of the secret of their success is
the search algorithm, which can search enormous amounts of data very fast.
Alghough the algorithm still is kept secret, Google has revealed its search in-
frastructure in an article which is used for this case study[1]1.

C.2 Application profile

The Google web search application is an internet search engine: one types
some keywords into the textbox, clicks on the “submit” button and a page is
served with web pages that have a relation to the keywords. The strongest
relations are presented at the top of the first page of results.

Google serves this search application on some 15,000 commodity PCs (in
2003), which together have the processing power of a large supercomputer
but just a fraction of the price. Commodity hardware is not very reliable, so
fault-tolerance is built in at software level. All data available in the system is
replicated over multiple nodes to ensure availability.

1The article is from 2003. Though the infrastructure will probably be much the same now,
absolute numbers might be different

62

Chapter C: Case study of Google Search

C.3 Infrastructure

Figure C.1: Google Search infrastructure

Webhead Webhead Webhead

Load balancer

Index
servers

Document
servers

Location B

Google master
DNS server

Client near
location B

Client near
location A

DNS request DNS request

HTTP
request

Webhead Webhead Webhead

Load balancer

Index
servers

Document
servers

Location A

HTTP
request

Location B response Location A response

Da
ta

 s
yn

ch
ro

ni
za

tio
n

The google search infrastructure is shown in figure C.1. Google uses DNS for
global request dispatching, selecting a Google search cluster near the client.
There the request is dispatched to a webhead using a HTTP load balancer.
These webheads do not answer the search query themselves. Instead, it co-
ordinates the answering of the question, formats it and sends it back to the
client.

The answering of the query itself comes in two phases. In the first phase, the
index servers are presented with the keywords. They have a reverse index that

63

Chapter C: Case study of Google Search

maps every keyword to a list of matching documents (the hitlist). They intersect
the hitlists of the individual keywords to determine the relevance of hits. This
relevance determines the order on the output page. The total amount of data in
the raw documents is tens of terabytes of data, and the index itself is terabytes
to. To be able to search through this, the index is sliced into pieces (index
shards). Each of these shards has a randomly chosen set from the full index.
A pool of machines serves requests for each shards, and the overall index
cluster contains one pool for each shard. When a request needs to be served,
a load balancer selects an index server for each shard that is needed. The
index cluster itself is a load balanced cluster of subclusters, each subcluster
serving queries for one shard of the index.

The first phase has a list of document IDs (docids) as a result. The second
phase is to send this list of docids to the document servers, which come up
with the URLs, titles and summaries of each of these documents. The doc-
ument servers are setup in a way similar to the index servers. The total set
of document information is sliced into shards, and each shard is represented
in a document server cluster by multiple servers. Requests to the document
servers again are routed through load balancers.

When the document information has been gathered, the webhead creates an
output page in HTML, invokes an ad server for relevant ads and a spell-checker
to do spell checking on the query. When all output is gatherd, the response
page is sent to the client.

C.4 Conclusions

Google Search, like Akamai, uses DNS for global scale-out. This can be very
interesting to our case study. Unlike Akamai, Google Search uses HTTP load
balancing for local scale-out. This approach will probably fit our case study
best. Google Search, like our case study, performs a very specific task. The
local cluster of Google Search isn’t like a standard web cluster which has a web
server, a database server and storage. In our case study, we will probably also
use non-standard components. Google seems to be using normal HTTP with
HTTP loadbalancing to access their non-standard services. An interesting part
of the Google Search architecture that is not described, is now the document
servers stay in sync. We discuss this problem in section 2.2.2.

64

Bibliography

[1] L.A. Barroso, J. Dean, and U. Holzle. Web search for a planet: The google
cluster architecture. Micro, IEEE, 23(2):22–28, March-April 2003.

[2] Strawberry Online Hosting Consultancy. Hosting definitions. http://
www.strawberryonline.co.uk/hosting-terms.htm.

[3] Brataas G and Hughes P. Exploring architectural scalability. In Proc. 4th
WOSP, pages 125–129, 2004.

[4] Dilley J, Maggs B, Parikh J, Prokop H, Sitaraman R, and Weihl B. Glob-
ally distributed content delivery. IEEE Internet Computing, 6(5):50–58,
September/October 2002.

[5] Duboc L, Rosenblum D.S, and Wicks T. A framework for characterization
and analysis of software system scalability. ESEC/FSE’07, September
2007.

[6] The Linux Information Project. Scalable definition. http://www.linfo.
org/scalable.html, March 2006.

[7] Cardellini V, Casalicchio E, Colajanni M, and Yu P. The state of the
art in locally distributed web-server systems. ACM Computing Surveys,
34(2):263311, 2002.

[8] Inc VirtualIron. Virtualiron livecapacity. http://www.virtualiron.
com/fusetalk/blog/blogpost.cfm?threadid=106&catid=22.
[Online; accessed 10-April-2008].

[9] Inc VMware. Vmware drs. http://www.vmware.com/products/vi/
vc/drs.html. [Online; accessed 10-April-2008].

[10] Wikipedia. Clustered filesystem — Wikipedia, the free encyclo-
pedia. http://en.wikipedia.org/wiki/Shared_disk_file_
system. [Online; accessed 7-April-2008].

[11] Wikipedia. Fibre channel — Wikipedia, the free encyclopedia. http://
en.wikipedia.org/wiki/Fibre_Channel. [Online; accessed 22-
February-2008].

65

http://www.strawberryonline.co.uk/hosting-terms.htm
http://www.strawberryonline.co.uk/hosting-terms.htm
http://www.linfo.org/scalable.html
http://www.linfo.org/scalable.html
http://www.virtualiron.com/fusetalk/blog/blogpost.cfm?threadid=106&catid=22
http://www.virtualiron.com/fusetalk/blog/blogpost.cfm?threadid=106&catid=22
http://www.vmware.com/products/vi/vc/drs.html
http://www.vmware.com/products/vi/vc/drs.html
http://en.wikipedia.org/wiki/Shared_disk_file_system
http://en.wikipedia.org/wiki/Shared_disk_file_system
http://en.wikipedia.org/wiki/Fibre_Channel
http://en.wikipedia.org/wiki/Fibre_Channel

Chapter : Bibliography

[12] Wikipedia. iscsi — Wikipedia, the free encyclopedia. http://en.
wikipedia.org/wiki/iSCSI. [Online; accessed 22-February-2008].

[13] Wikipedia. Load balancing — Wikipedia, the free encyclopedia. http://
en.wikipedia.org/wiki/Load_balancing_%28computing%29.
[Online; accessed 28-January-2008].

[14] Wikipedia. Multilayer switch — Wikipedia, the free encyclope-
dia. http://en.wikipedia.org/wiki/Layer_4_router#Layer_
4-7_switch.2C_web-switch.2C_content-switch. [Online, ac-
cessed 22-February-2008].

[15] Wikipedia. Network attached storage (nas) — Wikipedia, the free ency-
clopedia. http://en.wikipedia.org/wiki/Network-attached_
storage. [Online; accessed 22-February-2008].

[16] Wikipedia. Network file system (nfs) — Wikipedia, the free encyclope-
dia. http://en.wikipedia.org/wiki/Network_File_System_
%28protocol%29. [Online; accessed 22-February-2008].

[17] Wikipedia. Software as a service — Wikipedia, the free encyclope-
dia. http://en.wikipedia.org/wiki/Software_as_a_Service.
[Online; accessed 7-April-2008].

[18] Wikipedia. Storage area network (san) — Wikipedia, the free encyclo-
pedia. http://en.wikipedia.org/wiki/SAN. [Online; accessed
22-February-2008].

[19] W Zhang. Linux virtual server clusters. Linux Magazine, November, 2003.

66

http://en.wikipedia.org/wiki/iSCSI
http://en.wikipedia.org/wiki/iSCSI
http://en.wikipedia.org/wiki/Load_balancing_%28computing%29
http://en.wikipedia.org/wiki/Load_balancing_%28computing%29
http://en.wikipedia.org/wiki/Layer_4_router#Layer_4-7_switch.2C_web-switch.2C_content-switch
http://en.wikipedia.org/wiki/Layer_4_router#Layer_4-7_switch.2C_web-switch.2C_content-switch
http://en.wikipedia.org/wiki/Network-attached_storage
http://en.wikipedia.org/wiki/Network-attached_storage
http://en.wikipedia.org/wiki/Network_File_System_%28protocol%29
http://en.wikipedia.org/wiki/Network_File_System_%28protocol%29
http://en.wikipedia.org/wiki/Software_as_a_Service
http://en.wikipedia.org/wiki/SAN

	Introduction
	Context
	Research questions
	Approach
	Report structure

	Definitions and state of the art
	Definition of scalability
	Principles of scalability in web systems
	Scaling of database and storage systems
	Scaling of HTTP systems

	The case study application
	System tasks
	Requirements
	Components

	System design
	Overview
	HTTP service component
	Video hosting component
	Video processing component
	Database component
	Storage component

	Validation of the solution
	Approach
	Results
	Discussion

	Conclusions
	Recommendations

	Case study of Slashdot
	Introduction
	Application profile
	Infrastructure
	Conclusions

	Case study of Akamai
	Introduction
	Application profile
	Infrastructure
	Conclusions

	Case study of Google Search
	Introduction
	Application profile
	Infrastructure
	Conclusions

