
March 2024

A Textual Syntax and Toolset for
Well-Founded Ontologies

Matheus L. COUTINHO a, João Paulo A. ALMEIDA a, Tiago Prince SALES b and
Giancarlo GUIZZARDI b

a Ontology & Conceptual Modeling Research Group (NEMO),
Federal University of Espírito Santo (UFES), Brazil

b Semantics, Cybersecurity and Services (SCS), University of Twente, The Netherlands

Abstract. Diagrammatic and textual languages differ significantly with respect to
the experience they offer to language users. While diagrammatic languages lever-
age visual variables to improve communication and problem solving, textual lan-
guages facilitate significantly a number of tasks including version control, model
editing, model merging, parsing, etc. In this paper, we explore the design of a tex-
tual language for UFO-based ontologies, whose constructs mirror those of the On-
toUML language. The language is supported by a rich VS Code-based editor, sup-
porting (semantically-motivated) syntax verification, syntax highlight, autocom-
plete, and full integration into the OntoUML server ecosystem. A package manager
is also offered to support ontology modularization and reuse, drawing inspiration
from software package managers. Such functionality is currently not available to
languages such as (Onto)UML and Semantic Web languages such as OWL.

Keywords. Textual Language, Ontology Development, UFO, OntoUML

1. Introduction

In recent decades, there has been a growing interest in using foundational ontologies in
conceptual modeling and ontology engineering, with these ontologies being used in the
revision of conceptual modeling languages and in the creation of ontology-driven mod-
eling languages. A notable example in this domain is OntoUML [1,2], which was de-
veloped by incorporating the distinctions underlying the Unified Foundational Ontology
(UFO) [2,3] in the UML class diagrams. This has leveraged a foundation for concep-
tual modeling constructs, which reflects the various theories from linguistics, cognitive
science, and formal philosophical ontology used in the development of UFO.

OntoUML introduces various stereotypes that correspond to the concepts defined in
UFO as well as grammatical formal constraints that reflect UFO’s axiomatization. A key
goal for the language was to support the definition of high-quality well-founded refer-
ence ontologies. Over the years, sophisticated tooling has been developed for OntoUML,
including functionalities for: (i) editing and syntactic verification of models to conform
with UFO’s axioms [3,4]; (ii) model simulation, respecting the modal aspects of UFO [5];
(iii) automatic generation of database schemas guided by UFO metaproperties [6]; (iv)
detection of anti-patterns [7], among others.



March 2024

OntoUML is an extension of UML class diagrams (technically, a UML profile) and,
hence, primarily a diagrammatic/visual language for modeling ontologies. This provides
significant benefits for communication among ontologists, as well as (visual) problem-
solving. However, despite these advantages, there are also drawbacks associated with ex-
clusively visual representations, e.g., the effort invested in diagram-layouting tasks, the
difficulty of dealing with large diagrams, and the inability to apply mature text-based
tools to manipulate the models. Such tools could facilitate various tasks, such as version
control, comparison between versions of the same artifact, merging, auto-complete, and
more. Unfortunately, the infrastructure that has matured over the years for text-based lan-
guages cannot be applied directly to diagrammatic languages. Furthermore, and in line
with the Dual-Channel Processing theory [8], there are clear benefits to communication,
learning and problem-solving when diagrammatic and textual modalities are employed
in tandem to represent domain information. These benefits come from leveraging com-
plementary cognitive processes, as well as in the active process of paying attention to
different modalities and mentally integrating them into coherent representations.

The benefits of a textual notation for ontologies have motivated a number of devel-
opments in this area, including textual notations for Semantic Web ontologies, such as
the Turtle [9] and XML [10] serializations of OWL [11], and the more recent OML [12]
language. However, as discussed in [2], despite the name (“Web Ontology Language”),
OWL is to a large extent ontologically neutral. OML, in its turn, while largely based
on OWL, introduces a distinction between sortal types and non-sortal types [2] (which
in OML are called ‘concept’ and ‘aspect’, respectively). In any case, unlike OntoUML,
these languages do not make a full commitment to a foundational ontology and, hence,
do not systematically reap the benefits of reflecting the distinctions and guidelines put
forth by one. To address this gap, we propose here a textual syntax for ontologies based
on UFO, and integrated with the tools developed in the OntoUML ecosystem. The lan-
guage is termed Tonto (for Textual ontologies) and draws inspiration from the function-
ality support typically offered to programmers in professional coding platforms, includ-
ing: (semantically-motivated) syntax highlighting and verification, auto-complete, code
snippets, as well as package management supporting modularization and reuse.

The Tonto grammar reflects in its constructs the notions of UFO’s taxonomy of
types, thus allowing language users to establish the meta-properties of types in an on-
tology (including rigidity, sortality, external dependence, etc.) [3]. The grammar also re-
flects the notions of UFO’s taxonomy of individuals, allowing language users to distin-
guish between types of objects, of events, of relators, etc. Its formal syntactic constraints
reflecting UFO axioms, support the automatic identification of ontological mistakes.

This grammar was then used to generate a parser and an editor in the form of a
VS Code extension. VS Code was selected because of its extensibility, lightweightness
and ample user base. The Tonto VS Code extension provides a rich ontology editing ex-
perience supporting real-time (semantically-motivated) syntax verification, syntax high-
lighting, autocomplete, but also native transformation to OntoUML (JSON serialization).
Integration with the OntoUML server enables a number of additional services, includ-
ing OWL transformation (based on gUFO [13]), anti-pattern detection, model validation
via visual simulation, code generation, etc. [4]. Finally, a package manager is offered
for Tonto, inspired by popular software development package managers, to support the
modularization of projects, thereby enhancing ontology reuse and organization.

This paper is further structured as follows. Section 2 presents our baseline: the di-



March 2024

agrammatic OntoUML language, including a running example we use throughout the
paper to present Tonto; Section 3 presents Tonto’s requirements, while Section 4 elabo-
rates on its main design choices and introduces the grammar of the language; Section 5
presents the Tonto infrastructure and discusses our validation efforts for it, including the
preparation of a catalog with 168 Tonto specifications; Section 6 compares Tonto with
other textual languages for ontologies; Section 7 presents conclusions and future work.

2. Research Baseline: OntoUML

In what follows, we make a whirlwind tour on UFO’s distinctions reflected in OntoUML.
For a full presentation on the latter including its grammar, formal semantics, applications,
empirical support, and its formal connection to UFO, one should refer to [2,3].

Individuals in UFO can be either events (unfolding in time), situations (parts of the
world that can be understood as whole) or endurants. Endurants (or continuants) can
be objects or aspects (existentially dependent endurants). Aspects can be either exis-
tentially dependent on one single bearer (qualities and modes) or on multiple individ-
uals (relators). Qualities are aspects that take their values in certain quality structures
(conceptual spaces). Modes (e.g., dispositions) can be externally dependent on entities
other than their bearers (extrinsic modes). Within the space of endurant types, we have
sortals and non-sortals. Sortals are either substance sortals (i.e., the types that provide
a uniform principle of identity and individuation for their instances) or specializations
thereof (subkinds, phases and (historical) roles). Substance sortals are either called kinds
simpliciter (when their instances are functional complexes – i.e., wholes mereologically
structured into functional components), quantity (when their instances are amounts of
matter), or collectives (when their instances are mereologically structured into a uniform
membership). Non-sortals are types that collect instances of different substance sortals.
They are either categories, phase mixins, (historical) role mixins, or mixin simpliciter.
Substance sortals, subkinds and categories are rigid (they are necessarily instantiated by
their instances); phases, (historical) roles (mixins), and phase mixins are anti-rigid (they
are contingently instantiated by their instances); mixins are semi-rigid (necessarily in-
stantiated by some of their instances but contingently by others). A historical role is a
role played in the scope of an event by instances of a unique substance sortal (historical
role mixin when these instances can come from different substance sortals). Higher-order
types (including powertypes) are types whose instances are also types.

Figure 1 contains a fragment of an OntoUML model for a domain, which is used as
a running example throughout this paper. For example, the class Person is stereotyped
«kind». The classes Child, Teenager, and Adult are «phase»s a person goes through in
life. These phases of Person are instance of the higher-order type PersonTypeByAge.
Also, we have the role Employee that a person can play in the scope of a relationship (an
instance of the «relator» class Employment Contract) with an Employer, and hence this
class is marked with the stereotype «role». Employer is a role mixin whose instances can
be of several kinds (e.g., Universities, Hospitals, Military Organizations). A University
is a type of functional complex (hence, stereotyped as «kind») that has as components
Departments. Departments are constituted by instances of Staff («collective»), which are
structured in sub-collectives (e.g., Senior Staff), both of which have members that are
Employees. Qualities are typically represented in OntoUML via attributes, i.e., functions
mapping instances of the associated types to Datatypes (representing quality structures).



March 2024

Figure 1. Diagram describing a University with Person phases and roles

3. Requirements

In the sequel, we list the requirements driving the design of Tonto:

R1 – It should cover UFO [3] (and corresponding OntoUML constructs), including the
various types of classes with their corresponding metaproperites; it should support
the various types of relations accounted for in UFO (such as inherence, mediation,
whole-part relations); it should support the specification of the ontological natures
of instances of classes (distinguishing classes of objects, of events, of aspects, etc.),
as well as the specification of high-order types [14].

R2 – It should support the whole range of constructs that are usually offered in struc-
tural conceptual modeling languages (such as UML), including cardinalities, gen-
eralization sets, specializations, attributes, datatypes and enumerations.

R3 – It should embody rules that conduce to the production of sound models, in confor-
mity with the axiomatization of UFO [3].

R4 – It should employ a textual syntax that is familiar to users of mainstream object-
oriented programming languages (such as Java, Typescript and Swift) and UML.

Also, to increase usability, some requirements for the VS Code extension and Tonto
tooling were defined:

R5 – The tool should assist the modeler in discovering model errors with (real-time)
syntax verification based on OntoUML/UFO rules.

R6 – The tool should assist the modeler in producing syntactically correct Tonto models
with features such as code snippets and auto-complete.

R7 – The tool should be interoperable with the OntoUML ecosystems by importing/ex-
porting Tonto models to JSON in compliance with ontouml-schema1.

R8 – The tool should enable transparent access to the ontouml-server [4] functionali-
ties, leveraging these functionalities available for OntoUML models also for Tonto
models (including generation of OWL implementations).

1https://purl.org/ontouml-schema

https://purl.org/ontouml-schema


March 2024

R9 – The tool should support the modularization of Tonto-based projects, leveraging
dependency management that is widely adopted in software engineering (and em-
bodied in automated build management tools such as Maven, Gradle, NPM, etc.)

These requirements for Tonto and its tooling support highlight the focus on creating
a practical, user-friendly tool that addresses the limitations of existing ontology-driven
modeling languages. By fulfilling these requirements, Tonto aims to enhance the pro-
ductivity of modelers, improve model management, and foster a more collaborative and
efficient modeling environment.

4. The Tonto Language

In this section, we present the various elements of the language2 to address the afore-
mentioned requirements, including Tonto code fragments corresponding to our running
example. The elements are declared in Tonto specifications, i.e., textual files with the
.tonto extension.

4.1. Package Declarations

The first declaration in a Tonto specification is equivalent to the definition of a package
in UML/OntoUML, using the keyword package (see line 1 of Listing 1). It establishes
that all the declarations within a file belong to the named package at the top of a file.
Packages define naming spaces to cope with naming conflicts, and are the basis for mod-
ularity mechanisms in the Tonto package manager. After the package name, we have a
set of declaration statements. Every statement can be either: (i) a class declaration or (ii)
an auxiliary declaration. Auxiliary declarations include datatypes, enumerations, gener-
alization sets and associations (when defined outside the body of class declarations).

4.2. Class declarations

Every class declaration follows the idea of declarations in popular programming lan-
guages like Java, where we have a keyword for the type of the element followed by its
name or identifier. A number of UFO types corresponding to OntoUML stereotypes lead
to keywords of a class declaration in Tonto: kind, collective, quantity, quality,
mode, intrinsicMode, extrinsicMode, relator, type, powertype, subkind,
phase, role, historicalRole, event, situation, category, mixin, phaseMixin,
roleMixin, historicalRoleMixin. There is also the possibility of using the neutral
class keyword when the modeler has not yet specified the ontological category appli-
cable to a class (in which case, a Tonto editor should offer a warning to the user).

Listing 1 shows a fragment of our example model in Tonto. It employs the key-
words kind, phase, and role to define the model’s classes. To capture specialization
between classes, Tonto utilizes the specializes keyword following the identifiers of
the superclass(es).

The listing also shows the syntax for attributes, using the builtin datatypes number
and string. Cardinalities are indicated between square brackets, in this case exactly

2The Tonto EBNF specification can be found at https://w3id.org/tonto/ebnf.

https://w3id.org/tonto/ebnf


March 2024

one for name and age (the default cardinality), and one or more for alternateNames.
Specific lower and upper bounds can be established, e.g., [2..4], [0..*], with ‘*’
denoting an unbound upper limit (and [*] as a shorthand for [0..*]). A constraint
indicating that alternateNames is an ordered sequence is included between brackets.

Listing 1: Tonto model for person phases and roles based on a fragment of Figure 1.

1 package Persons
2

3 kind Person {
4 name: string
5 alternateNames: string [1..*] { ordered }
6 age: number
7 }
8 phase Child specializes Person
9 phase Teenager specializes Person

10 phase Adult specializes Person
11

12 role UniversityStudent specializes Person
13

14 role Employee specializes Person
15 role UniversityProfessor specializes Employee

4.3. Using multiple packages

Tonto employs a multi-package system in which every .tonto file specifies one pack-
age, and imports can be used between packages. We exemplify this feature by adding a
separate package called PersonAndOrganizationDatatypes in Listing 2. By default,
Tonto supports the following datatypes: number, string, boolean, date, time
and datetime following the existing datatypes on JSON and the most used datatypes on
OntoUML catalog. Here we add custom datatypes for int, Address and EyeColor. Be-
cause numbers are broader than integers, we declare a custom datatype called int, which
is a specialization of number. This definition of int is only nominal (i.e., ‘opaque’).
The Address datatype declared as a complex one formed by country, city, postal code,
street, all of them with type string, and street number with type int. Lastly, there is
the declaration of an enumeration (a particular type of Datatype in UML), which consist
of unordered literal values. In this case, eye color is conceived of as a nominal quality
structure with Blue, Green, Brown, and Black as possible values.

Listing 2: Tonto package of custom DataTypes.

1 package PersonAndOrganizationDatatypes
2

3 datatype int specializes number
4 datatype Address {
5 country: string
6 city: string



March 2024

7 postalCode: string
8 street: string
9 streetNumber: int

10 }
11 enum EyeColor { Blue , Green , Brown , Black }

The datatypes in the separate package can be used to revisit the attributes of Person.
In this case, because elements are on different packages, we must first import the contents
of the PersonAndOrganizationDatatypes package. If these are not imported, the
package will not be able to make a reference to the other element. This decision prevents
many suggestions from polluting the auto-completion functionality as projects grow.

Listing 3 shows the new version of the kind Person with full attributes. There are
two options for using imported elements: with their short name (e.g., EyeColor) or
with a qualified name (e.g., PersonAndOrganizationDatatypes.EyeColor) when
the short name would cause ambiguities (due to its presence in more than one package).

There is also the possibility of specifying meta-attributes of attributes, enclosed
by curly brackets. The birthDate attribute has a meta-property called const (i.e. im-
mutable), age is derived, and alternateNames is ordered. Every meta-property in
attributes needs to be defined inside brackets at the end of the attribute declaration. In
classes, by default, every attribute is not: constant/immutable, ordered, or derived.

Listing 3: Revisiting the attributes of persons with imported custom datatypes.

1 import PersonAndOrganizationDatatypes
2

3 package PersonPhases
4

5 kind Person {
6 birthDate: date { const }
7 age: number { derived }
8 name: string
9 alternateNames: string [1..*] { ordered }

10 eyeColor: EyeColor [1..2]
11 }

4.4. Generalization Sets

An important construct to shape taxonomies in Tonto is the generalization set, based on
the homonymous construct in UML (and inspired in the corresponding syntax in the ML2
multi-level textual modeling language [15]). Generalization sets capture the relations
between a general class and a set of specializing classes. They can be decorated with the
keywords disjoint and complete. The first keyword indicates that each instance of the
superclass can only instantiate a maximum of one of the subclasses. The second keyword
requires instances of the general class to instantiate at least one of the subclasses. The
absence of these keywords in a generalization set declaration amounts respectively to
overlapping and incomplete generalization sets.

Listing 4 shows the short variant of the generalization set syntax in line 1, which
includes the modifiers (in this case, complete and disjoint), the keyword (genset),



March 2024

a name for the set (PhasesOfPerson), the subclasses (after the where keyword) and the
superclass (after specializes).

Lines 5 to 9 show the expanded variant of the same generalization set, which also in-
cludes the high-order type that is instantiated by each subclass (also known as powertype
in the UML literature): PersonTypeByAge defined with the keyword type in line 3. The
keywords general determine the specialized superclass, while the keyword specifics
defines all subclasses, separated by a comma. Each phase previously declared is now
specified to be instance of this higher-order type, marked as the categorizer of the
generalization set. Categorizers are optional, but are instrumental in multi-level models.

Listing 4: A fragment of a Tonto specification to illustrate generalization set syntax.

1 disjoint complete genset PhasesOfPerson where Child , Teenager ,
Adult specializes Person

2

3 type PersonTypeByAge
4

5 disjoint complete genset PhasesOfPerson {
6 general Person
7 categorizer PersonTypeByAge
8 specifics Child , Teenager , Adult
9 }

4.5. Relations

Relations (corresponding to UML associations) can be declared in two different syn-
taxes in Tonto: in the first syntax (called ‘internal’), it is defined inside the body of the
declaration of a class; in the second (‘external’), outside the body of class declarations.

Listing 5 shows the ‘internal’ variant, for the part-whole relation between a univer-
sity and its departments, the constitution of a department by a staff collective with its
members. The annotations @componentOf, @memberOf and @subCollectionOf corre-
sponds to the homonymous stereotypes in OntoUML (a syntax inspired in Java annota-
tions, and available to every association stereotype in OntoUML).

Relation specification works like a mirror (inspired in the UML notation for asso-
ciation, which is a line with opposing association ends), where the definition order for
the element in the first end is inverted for the second end. In the example, the first car-
dinality in line 4 represents the cardinality on the University end ([1]), and the second
cardinality of [2..*] represents the Department end of the association.

The order of declaration in the first end is, after the relation stereotype: first end
meta-attributes (ordered, const and derived, all optional); first end name between
parentheses (also optional); first end cardinality (optional with default [1]). The associ-
ation end is followed by the main relation keyword, which is: ‘<o>- -’ for a composi-
tion, i.e., non-shareable parthood; ‘- -’ (a line) for regular associations, and; ‘<>- -’
(a white diamond-adorned line) for an aggregation, i.e., shareable parthood. These key-
words defines the ‘middle’ point of a relation. The relation name can be defined (option-
ally) after the keyword, in which case an extra keyword ‘- -’ is added after its name.



March 2024

Listing 5: A fragment of the university example with relations in the internal syntax.

1 kind University specializes Organization {
2 address: Address
3 @componentOf
4 [1] <o>-- [2..*] Department
5 }
6

7 kind Department {
8 [1] -- constitutedBy -- [1] Staff
9 }

10

11 collective Staff {
12 @memberOf
13 [1..*] <>-- [2..*] Employee (members)
14 @subCollectionOf
15 [1] <o>-- [1] SeniorStaff
16 }

Listing 6 shows the definition of relations in the external syntax variant. The only
difference between them is the need for the keyword relation and the name of the first
end class; every other component of the relation is declared in the same way as in the
internal syntax.

Listing 6: Example of the external syntax variant for relations.

1 @memberOf
2 relation SeniorStaff [1..*] <>-- [2..*] Professor (professors
3 {subsets members })

Finally, listing 7 shows the use of mediation relations in the internal syntax with the
relator pattern (the pattern is provided in the editor as a useful ‘code snippet’).

Listing 7: Example of relators added to the University package.

1 roleMixin Employer specializes Organization
2 role Employee specializes Person
3 relator EmploymentContract {
4 @mediation [1..*] -- [1] Employee
5 @mediation [1..*] -- [1] Employer
6 }
7 role PhDCandidate specializes Person
8 relator PhDEnrollment {
9 @mediation [0..*] -- [1] University

10 @mediation [1..*] -- [1] PhDCandidate
11 }



March 2024

5. Implementation and Cross-Tool Evaluation

5.1. The Tonto Visual Studio Code Extension

We adopted Langium3 to craft a language server for Tonto, leading to the Visual Studio
Code extension depicted in Figure 2. The Tonto Extension actively recognizes all .tonto
files within a workspace as components of a unified project, treating each file as a dis-
tinct package.4 A key functionality of this extension is its capability to conduct real-time
UFO-based semantically-motivated syntactic verification during modeling, identifying
and marking ontological inconsistencies as errors, akin to error handling in traditional
programming environments. The extension implements verifications also performed in
the OntoUML language, which include checking the taxonomic structures for incompat-
ible metaproperties (non-sortals specializing sortals, rigid types specializing anti-rigid
types, etc.) and for incompatible ontological natures (event types specializing endurant
types and vice-versa, aspect types specializing object types and vice-versa, etc.)

Figure 2. Example of Visual Studio Code running Tonto in the University package

The editor supports the transformation of Tonto projects to OntoUML (as JSON doc-
uments compliant with ontouml-schema) and vice-versa, which enables the integration
with the functionality available in the OntoUML server. This opens us the possibility to
transform Tonto specifications into gUFO-based OWL ontologies, bridging the gap from
reference ontologies to operational ontologies.

In order to support the reuse of Tonto projects, we implemented a package manager.
It is based on popular solutions for programming languages, for example, the Node Pack-
age Manager (NPM), the Swift Package Manager (SPM) and Cargo, the package man-

3https://langium.org
4Simply adding a .tonto file prompts VS Code to suggest the installation of the extension, which is avail-

able in the marketplace https://w3id.org/tonto/extension. https://w3id.org/tonto documenta-
tion website was created to help the understanding of Tonto tools.

https://langium.org
https://w3id.org/tonto/extension
https://w3id.org/tonto


March 2024

agers for JavaScript, Swift, and Rust, respectively. The Tonto Package Manager (TPM)
allows the definition of package dependencies on a manifest file, named tonto.json.
An ‘install’ command can be used to retrieve all the necessary dependencies for a project
from a distributed git repository. Listing 8 shows an example of a manifest file for the
presented University project, showing the possibility of defining the datatypes used in
this project as the equivalent of a library, allowing reuse in other projects. This is a fea-
ture that is currently indispensable in the management of software engineering projects,
and which is not yet commonplace for ontology engineering.

Listing 8: An example of a Tonto Manifest file.

1 { "projectName": "UniversityModel",
2 "version": "1.0.0",
3 "publisher": "NEMO and SCS",
4 "dependencies": {
5 "PersonAndOrganizationDatatypes": {
6 "url": "https :// github.com/url-to-package",
7 "directory": "path/to/package" }
8 },}

Lastly, we implemented a prototype for automatic diagrammatic visualization of
Tonto specifications showing the package being edited. This feature is shown in the right-
hand side of Figure 2, and reduces the gap between a Tonto package and a corresponding
OntoUML diagram.

5.2. Cross-Tool Evaluation: OntoUML and Tonto Ontologies Catalog

To evaluate the integration of Tonto with existing OntoUML tools, we employed the
OntoUML Catalog to generate a new catalog5 comprising equivalent versions of each
model in Tonto. The Tonto catalog encompasses 168 models. We have implemented an
‘import’ command within Tonto’s Command Line Interface (CLI)6 to perform the auto-
matic conversion of each model from its OntoUML JSON serialization to Tonto, instan-
tiating every element using its corresponding counterpart within Tonto. Given the exten-
sive number of models involved, an automated consistency check was executed to com-
pare the generated Tonto model against its original JSON serialization. Analysis demon-
strated an average equivalence of 98% between the models under the import command.
Further, we have compared Tonto’s syntax verification and the correspondent functional-
ity in the ontouml-server API. A script executed concurrent syntax verification, logging
error counts for each model. Results showed a 5% average error count discrepancy, with
Tonto identifying more errors. Closer examination revealed that the majority of these dis-
crepancies stemmed from pre-existing syntactic issues in the source OntoUML models
or limitations in the JSON-to-Tonto transformation (e.g., anonymous generalization sets
that requires naming in Tonto). This highlights the potential need for manual adjustments
when importing existing models into Tonto. The observed increase in errors identified in

5https://w3id.org/tonto/catalog
6https://w3id.org/tonto/cli

https://w3id.org/tonto/catalog
https://w3id.org/tonto/cli


March 2024

Tonto is likely attributable to its more strict validation mechanisms, especially regarding
element naming conventions.

Tonto prohibits the use of strings, special characters, and numeric prefixes in ele-
ment names. This restriction, intended to preserve integrity, can create naming conflicts
during the import process, as some elements may need to be renamed to prevent data
loss. These conflicts then generate errors specific to Tonto, relating to duplicate names,
which wouldn’t be present in the original OntoUML JSON serialization. Furthermore,
the import command may occasionally struggle to correctly determine the appropriate
package, leading to additional errors. Note that these issues are less likely in OntoUML
models contained within a single JSON project, which simplifies the import process. De-
spite these discrepancies, overall findings demonstrate a high-level of functional agree-
ment between the original OntoUML server implementation and the verifications ported
to Tonto.

6. Related Work

We discuss here how Tonto compares with OWL Turtle and XML syntaxes, with the
Ontological Modeling Language (OML),7 and with OntoUML. This exercise highlights
Tonto’s unique contributions within the landscape of ontology notations.

Use of a foundational ontology. A key aspect of Tonto is that its design is tailored
to represent the ontological distinctions and patterns defined by UFO. In contrast, the
other textual syntaxes considered here are largely ontologically neutral. By incorporating
UFO distinctions, ontologies created in Tonto can benefit from extensive semantically-
motivated syntactic verification, and clearer expression of ontological commitments.

Readability. Tonto adopts a human-readable syntax designed for intuitive authoring of
UFO-based models, prioritizing accessibility over the complexities of machine-oriented
formats like XML. Like Turtle and OML, Tonto offers a user-friendly textual syntax,
though further research is needed to compare their relative readability. Notably, Turtle
serializations of Tonto models exhibit increased verbosity. For example, one model could
expand from 71 lines in Tonto format to 160 lines in OWL. This difference is primar-
ily due to Turtle’s syntactic requirements and the use of punning to express UFO type
instantiations within OWL.

OWL Compatibility. OWL is a de facto standard for ontology codification in the Se-
mantic Web, and hence, the ability to transition from alternative languages to OWL is
important. The other languages we have considered are either OWL serializations (Turtle
and XML) or support conversions to it. OML (and likewise OWL) distinguishes itself by
allowing for explicit axiom description, offering enhanced built-in datatype support, and
accommodating individuals. These features position OML for superior OWL integration
compared to Tonto, highlighting OML’s nuanced capabilities in ontology modeling and
interaction with OWL standards.

Code-based tools and Version Control. Code-based ontology development tools offer
advantages like robust version control, crucial for collaborative projects. Notably, all

7https://www.opencaesar.io/oml/

https://www.opencaesar.io/oml/


March 2024

text-based ontology languages in this study (including Tonto and OML) inherently sup-
port version control. However, their streamlined syntax simplifies change visualization
using diff tools when compared to diagrammatic languages. While OntoUML integrates
with the Visual Paradigm plugin and supports version control through its JSON schema,
merging model changes presents significant challenges. These difficulties likely stem
from complexities in the model serialization mechanism, where minor model changes
can result in large serialization discrepancies.

Dependency Management Support. While OWL includes an import directive, which is
used in an ontology to gain access to the entities defined in other ontologies, there are no
tools to support dependency management in a manner analogous to that offered to soft-
ware engineering environments. This is even more critical in the case of OntoUML, as
UML tools typically lack support for projects spanning several files, let alone distributed
over several repositories. The Tonto package manager supports version declaration and
checking, licensing declaration, and automated download from git repositories. Similar
functionality is offered for OML as OML projects are Gradle8 projects.

Logical Expressivity. We have not yet implemented support for the specification of in-
variants and derivation rules in Tonto, or other forms of axiomatization that are currently
supported in OWL, OML and OntoUML, either directly or in the form of additional lan-
guages (such as SPARQL and SHACL, or OCL in the case of OntoUML). This is the
first priority in the further development of the language and associated toolset.

The following table presents a summary of each analyzed feature in each tool:

Table 1. Table of available relation stereotypes in Tonto

Characteristic Tonto Turtle OML XML OntoUML
Based on a foundational ontology x x
Readability x x x x
Integration with OWL x x x x x
Easy to use version control x x x
Direct application of code-based tools x x x x
Dependency Management Support x x x x
Logical expressivity (invariants, derivations) x x x x

While numerous textual languages exist for modeling purposes, such as Alloy [16],
OCL [17], and MontiCore [18], they do not specifically target ontology specification.
Tonto differentiates itself by focusing on OntoUML-based ontology modeling, address-
ing a niche that these languages do not. The analysis of these languages falls beyond the
scope of this paper.

7. Conclusion

This article introduces Tonto, a textual language designed for UFO-based ontology mod-
eling, addressing limitations of diagrammatic representations. Tonto enhances modeling
efficiency through text-based syntax, real-time validation, and transformation capabil-

8https://gradle.org

https://gradle.org


March 2024

ities, supported by a Visual Studio Code extension and a package manager for modu-
larization. It offers a novel approach for the development of well-founded ontologies,
leveraging text-based tools’ advantages for version control, modularization, and integra-
tion with development environments. We expect to continue the development of Tonto
with a number of features, including: (i) support for arbritrary axioms (invariants, deriva-
tion rules); (ii) specification of individuals and values for attributes; (iii) documentation
generation (akin to Javadoc documentation in comments); (iv) automated ontology test-
ing and verification; and finally, (v) integration with Large Language Models (LLMs) to
provide functionally currently offered in programming environments with tools such as
Github copilot. We also aim to design and perform experiments to empirically assess the
performance of Tonto when contrasted with OntoUML in a number of tasks.

References

[1] Guizzardi G, et al. Types and taxonomic structures in conceptual modeling: a novel ontological theory
and engineering support. Data & Knowledge Engineering. 2021;134:101891.

[2] Guizzardi G. Ontological foundations for structural conceptual models. Enschede, The Netherlands:
Centre for Telematics and Information Technology; 2005.

[3] Guizzardi G, et al. UFO: Unified Foundational Ontology. Applied Ontology. 2022;17:167-210.
[4] Fonseca CM, Sales TP, Viola V, Fonseca LBR, Guizzardi G, Almeida JPA. Ontology-Driven Conceptual

Modeling as a Service. In: The Joint Ontology Workshops. CEUR-WS; 2021. .
[5] Benevides AB, Guizzardi G, Braga BFB, Almeida JPA. Validating Modal Aspects of OntoUML Con-

ceptual Models Using Automatically Generated Visual World Structures. J UCS. 2010 2;16:2904-33.
[6] Guidoni G, Almeida JPA, Guizzardi G. Transformation of Ontology-Based Conceptual Models into

Relational Schemas. In: Conceptual Modeling. ER 2020. Springer; 2020. p. 315-30.
[7] Sales TP, Guizzardi G. Ontological Anti-Patterns: Empirically Uncovered Error-Prone Structures in

Ontology-Driven Conceptual Models. Data & Knowledge Engineering. 2015 2;99.
[8] Dori D. Words from pictures for dual-channel processing. Comm of the ACM. 2008;51(5):47-52.
[9] W3C. OWL Turtle; 2014. URL: https://www.w3.org/TR/turtle. Accessed: March 4, 2024.

[10] W3C. OWL XML; 2009. URL: https://www.w3.org/2007/OWL/wiki/XML_Serialization.
html. Accessed: March 4, 2024.

[11] W3C. OWL; 2012. Accessed: March 4, 2024. Available from: https://www.w3.org/OWL/.
[12] Wagner DA, Chodas M, Elaasar M, Jenkins JS, Rouquette N. In: Madni AM, Augustine N, Sievers M,

editors. Ontological Metamodeling and Analysis Using openCAESAR; 2023. p. 925-54.
[13] Almeida JPA, Falbo RA, Guizzardi G, Sales TP. gUFO: A Lightweight Implementation of the Unified

Foundational Ontology (UFO); 2019. Available from: http://purl.org/nemo/doc/gufo.
[14] Fonseca CM, Guizzardi G, Almeida JPA, Sales TP, Porello D. Incorporating Types of Types in Ontology-

Driven Conceptual Modeling. In: Conceptual Modeling. ER 2022. vol. 13607; 2022. p. 18-34.
[15] Fonseca CM, Almeida JPA, Guizzardi G, Carvalho VA. Multi-level Conceptual Modeling: From a

Formal Theory to a Well-Founded Language. In: Conceptual Modeling. ER 2018; 2018. p. 409-23.
[16] Jackson D. Software abstractions: Logic, Language, and Analysis. MIT Press; 2016.
[17] Cabot J, Gogolla M. Object Constraint Language (OCL): A Definitive Guide. vol. 7320; 2012. p. 58-90.
[18] Krahn H, Rumpe B, Völkel S. MontiCore: a framework for compositional development of domain

specific languages. International journal on software tools for technology transfer. 2010;12:353-72.

https://www.w3.org/TR/turtle
https://www.w3.org/2007/OWL/wiki/XML_Serialization.html
https://www.w3.org/2007/OWL/wiki/XML_Serialization.html
https://www.w3.org/OWL/
http://purl.org/nemo/doc/gufo

