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Abstract. As ontologies find an ever-larger number of applications, the diversity of
domain ontologies and the requirements for their intended uses increases as well,
creating challenges for interoperability and tooling. There are often multiple ways
of modelling the same knowledge, which have coalesced into ontology patterns and
modelling styles, and pattern alignments for perceived to semantically the same
domain knowledge have been identified. To facilitate interoperability and applica-
bility of foundational ontology-based modelling choices with domain ontologies
and so-called application ontologies or conceptual data models, we propose a gen-
eral framework for the substitution of one pattern for another. This can be applied
by various methods, including purely syntactic comparisons. A proof-of-concept
tool that implements such a syntax-based approach for FOL ontologies encoded in
CLIF is demonstrated and evaluated against a set of DOLCE-aligned ontologies.
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1. Introduction

Ontologies have found increasing use in information systems, in part due to the populari-
sation of the decidable Description Logic-based languages with their standardised serial-
isations, such as the Web Ontology Language (OWL) family [1], and as ontologies such
as the Gene Ontology [2,3] as well as recent developments with the adoption of FIBO
in the banking industry, ontologies for cultural heritage, among many others, and their
connection with popular knowledge graphs [4,5]. The more expressive but undecidable
first-order logic (FOL) is often used as a common superset within which to describe other
logics, but it is also used for its expressiveness to describe foundational ontologies and
for computational knowledge representation such as in Colore [6]. Further, also concep-
tual data models have been given logic-based reconstructions in various logics, including
Description Logics (DLs) (e.g., [7,8]), OWL (e.g., [9]), and three flavours of FOL, being
common logic interchange format (CLIF) [10], Alloy [11], and Z [12].

Since much like conceptual data modelling for software engineering, ontology engi-
neering is a human practice, design patterns and modelling styles have arisen. These are
patterns of expression which reflect either their users’ preferred ontological view of the
semantic relationships they must describe or pragmatics for the prospective application.
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For instance, representing ‘marriage’ as a class Marriage or as a relationship married to
and the colour of a car as Colour as a subtype of Quality or as an attribute hasColour.

In many cases, the same knowledge may be represented in multiple, nearly equiva-
lent, ways, and which design pattern is used depends on factors such as preference or cus-
toms, affordance of the modelling language or modelling tool, of model quality, and/or
intended purpose of the artefact. For instance, biological and biomedical ontologies typ-
ically follow the modelling style as in BFO [13] and ontology-based data access systems
[14] require a so-called “applied” style [15] for more efficient computational process-
ing. This causes problems both in ontology development and in ontology-driven concep-
tual modelling, notably when developing multiple conceptual data models from a single
ontology to ensure system interoperability upfront [16,17] or, vice versa, align multiple
conceptual data models to a domain or foundational ontology [18], they will likely mis-
match. Aligning ontologies that overlap but have different modelling styles—and thus
use different design patterns in their representations—requires identifying alignments of
such patterns, so that mappings may be described from one onto the other.

Several patterns and pattern alignments have been identified [19] which are de facto
special cases of carefully curated complex alignments [20]. Instead of finding align-
ments, as in [19,20], we are interested in transforming one axiom pattern into another.
Pattern-based transformations are useful in a number of applications, including 1) sim-
plification, by transforming foundational ontology-inspired elaborate representations of
high complexity that also make ontologies harder to verbalise into compacter patterns
that need fewer language features and are easier to implement; 2) harmonisation of mod-
elling style to facilitate current or prospective ontology alignment; or 3) substitution of
one foundational ontology for another [21]. This requires direct substitution of one de-
sign pattern for another within an ontology, rather than aligning two disparate ontolo-
gies. Pat-O-Mat [22] proposes this for OWL ontologies by exploiting SPARQL queries.
Since such queries are constrained by the logic on which they operate (OWL), such an
approach does not generalise to full FOL or above to cover more and more expressive on-
tologies and conceptual data models, whose expressiveness is at least popular for several
ontologies, such as those in Colore [6] and conceptual data modelling languages, such
as ORM [23]. While DLs are used due to their decidability, limitations are well-known
and there is still interest in knowledge representation in FOL (e.g., [24,6]). Additionally,
most new logics are presented in the literature with mappings into FOL (e.g., recently in
[25]), and reasoners such as Vampire [26] continue to receive attention for their relevance
to theorem proving and software/hardware verification [27].

We resolve these issues in a two-step approach. First, we propose a broadly appli-
cable framework for pattern substitution in ontology transformation that can be imple-
mented not only by querying an ontology for axiom satisfaction, but also by other meth-
ods, including purely syntactic comparisons. Second, we apply this framework, along
with devising algorithms for, the substitution of the five ontology pattern (OP) align-
ments in [19] that list pairs of patterns of an applied style and foundational ontology-
inspired modelling style. The framework and algorithms were implemented in a proof-
of-concept tool 1 named Humusha (from Zulu: to translate/interpret), availing of ontolo-
gies in FOL encoded in CLIF or converted into it, and using the parsing facilities of the
Heterogeneous Tool Set (HETS) [28]. Since this is, to the best of our knowledge, the first

1Available at: https://github.com/wleightond/humusha

https://github.com/wleightond/humusha
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solution to this problem, we use a preliminary use case-based evaluation to demonstrate
its usefulness and usability. It showed correctness of encoding, but also that alignments
of domain ontologies to foundational ontologies are partial, which limits the number of
pattern substitutions.

The remainder of the paper is structured as follows. After introducing the running
example in Section 2, we present the framework and algorithms in Section 3. The imple-
mentation and evaluation is presented in Section 4. We discuss in Section 5 and conclude
in Section 6.

2. Running Example: The Representing Roles Pattern

Besides the pattern pairs collected and formalised in [19], we also consider those in [29].
One of the patterns of [19] will be used as a running example, being the Representing
Roles pattern, and, in the case of patterns that reference classes and relationships from a
foundational ontology, DOLCE [30] will be used. The other patterns are included in the
supplementary material (see details at the end of paper).

The Representing Roles (RR) pattern concerns the modelling choice to represent a
role as either a subclass or a separate class with their relationship described by classes and
relationships from a foundational ontology. In the latter case, One-sided (Generic) Con-
stant Dependence (OD and OGD, respectively) relates two classes that are subclasses of
Physical object (POB) and Social Object (SOB), respectively, which also share the OD
or OGD relation. This is illustrated in Fig. 1.

dolce:Physical 
Object

ex:Employeeex:Person

dolce:Social
Object

ex:Employee

dolce:one-sided 
dependence

dolce:one-sided 
generic dependence

ex:Person

substitution

Figure 1. An example of the RR pattern substitution. Left: part of a DOLCE-aligned conceptual data model
or domain ontology where either one-sided dependence or one-sided generic dependence is declared. Right:
the resultant compacter representation after the substitution.

After formalising each pair of complex and simplified ontology patterns, the ques-
tion is thus of how to achieve that algorithmically, and in such a way that the system is
adaptable to addition of new pattern pairs.

3. Framework and Architecture

OP substitution in general consists of a notion of patterns, substitutions, and the processes
for pattern instance identification and substitution. An OP is comprised of a templated
set of axioms (also called axiom types) that must hold over an ontology. For OWL, iden-
tification of the satisfaction of axioms may be done using SPARQL or SPARQL-OWL
queries, but for FOL and other logics, other approaches are needed. A general frame-
work for substitution therefore requires first the specification of its key components, such
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as the logic being operated on, its encoding, and the criterion for satisfaction and how
such satisfaction is assessed. Taking these considerations into account, we declare the
components of the framework to be as listed in Definition 1.

Definition 1 An ontology pattern substitution framework consists of:

• The logic L and encoding (its particular syntax or serialisation) being used, Ls;
• A logical theory represented in language Ls, which is an ontology, O;
• A representation for axioms in the given logic, A ;
• A representation for patterns as constrained templated combinations of axioms,

P;
• A representation for substitutions S as pairs of valid pattern instances and their

replacements;
• A set of pattern substitution specifications U such that for each pattern k there

exists an element uk = ⟨Pk,Sk⟩, a pair of pattern specifications for the pattern
Pk = ⟨Ck,Rk,Fk⟩ and its substitution Sk = ⟨C′k,R′k,F ′k⟩, where:

* each pattern specification p ∈ P is a tuple ⟨C,R,F⟩ of sets of elements
(classes, relations, and axioms) of the ontology O, where:

* C ⊆ OC, a subset of classes in the ontology,

* R ⊆ OR, a subset of relationships in the ontology, which are used in a
set of logical formulae F such that:

* F ⊆ OA, a subset of the axioms in the ontology using only the classes
and relationships in C and R, respectively.

• An architecture for identifying pattern instances in P and substituting them using
specifications in U . Such an architecture must necessarily consist of, at least:

* A manner of identifying valid axiom instances;
* A manner of identifying valid pattern instances and generating substitutions

from them;
* A manner of applying those substitution transformations to an ontology.

where these manners are assumed to be algorithms. ♢

While this framework is fixed, certain components can be instantiated in many different
ways for a particular application, in particular regarding the logic one chooses, which
patterns to include for substitutions, the pattern-finding algorithms, and the ‘manner’, or
ordering of, applying the substitutions. One could also conceive of an optional add-on
to introduce a human-in-the-loop during the application of the substitutions, but this is
strictly not necessary to solve the task at hand.

The set of pattern substitution specifications (U ) is extensible and contains formal
specifications such as for the RR pattern of the running example. In this paper, we focus
on foundational-to-applied pattern substitutions. Others are, among others, the follow-
ing ones, illustrated with an example each (see supplementary material for the formal
specifications):

• Class vs Object Property (COP): Marriage can be represented either as a class
which a Person participates in, or directly as a relationship between two people.
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• Perdurant Class vs Object Property (PCOP): One could model a marathon as some-
thing which a Runner runs, or reify running into a class Running that is involved in
(part of) a Marathon.

• Class vs Data Property (CDP): In OWL a person having a skill could be modelled
with an object property the range of which is a class Skill, or a data property
hasSkill with data type String.

• Qualities vs Data Properties (QDP): an apple having a colour could be modelled
with a data property with range RGBvalue, or could make use of a foundational
ontology’s classes and relationships to model the Apple as an Endurant which
has quality some Colour which has quale some physical region.

• Class-Relationship-Attribute (CRA): a person could be modelled as having a name
either by a relationship has name some class which in turn has a data property
name, or by associating such a data property directly with the person class.

• Intrinsic descriptive property (IDP) truth-making pattern [29]: a rose having a
colour could be modelled as a Rose which participates in some ColorOccurence
which has f ocus some Color which inheres in the Rose, or as a Rose with a data
property color.

Adapting the OP to FOL from the original formalisation in Description Logics [19],
the pattern specification for the running example RR pattern is the tuple ⟨C,R,F⟩—where
C denotes the unary predicates, R the n-ary predicates where n ≥ 2, and F the set of
axioms—that constitute the pattern, where, for the RR pattern:

Cr = {D,E,POB,SOB} where POB,SOB ∈ ODOLCE andD,E ∈ OS

Rr = {OD,OGD} where OD,OGD ∈ ODOLCE

Fr = {∀x(D(x)→ POB(x)),∀x(E(x)→ SOB(x)),

∀x(E(x)→∃y(D(y)∧OGD(x,y)))}

where D and E are unary relations in the source ontology OS, such as Employee, and
ODOLCE the DOLCE ontology specifically. A similar pattern could be specified for other
foundational ontologies. To demonstrate that the three axioms in F can be encoded into
CLIF:

(forall (x) (if (D x) (POB x)))

(forall (x) (if (E x) (SOB x)))

(forall (x) (if (E x) (exists (y) (and (D y) (OGD x y)))))

The candidate substitution for the RR pattern is accordingly ⟨C′,R′,F ′⟩ where:

C′r ={D,E}

R′r ={}

F ′r ={∀x(D(x)→ E(x))}

which is encoded into CLIF as: (forall (x) (if (D x) (E x))).
Another well-known OP substitution is n-nary into n binary relations, which could

occur when converting an expressive ontology in FOL into OWL. Another one at the
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expressiveness vs implementation pareto frontier includes simplifying property chains,
such as from contain ◦ hasPart ⊑ contains to asserting contains directly, i.e., materi-
alising the deductions and removing the original chain. They may be motivated also by
language feature usage conflicts when integrating ontologies or converting an expressive
ontology into a simpler one in a language that does not have property chains, not only
from a foundational ontology-inspired style to an applied style.

4. Implementation and Evaluation

To test the framework, we designed an architecture, implemented it, tested it, and evalu-
ated it, which is described in this section.

4.1. Design and implementation

For our instantiation of the framework and a proof-of-concept implementation, the logic
used is FOL as encoded in CLIF. The architecture for the proof-of-concept application
consists of the following components:

• A CLIF parser;
• A generator for axiom instance identifiers which takes a set of pattern specifica-

tions and generates binaries which take in an ontology and output axioms which
are instances of the given axiom, with the templated variables extracted;

• A substitution generator which takes the set of valid axiom instances, identifies
combinations of those which form valid pattern instances, and outputs the appro-
priate substitution for each in the form of ADD/DELETE commands;

• Encodings of the patterns [19] and substitutions generated for them ;
• A substitution program which executes ADD/DELETE commands in series on the

original input ontology.
These components fit best together in a pipeline architecture to execute a sequence of
steps in a set of modules, which is depicted in Fig 2.

For pattern instance detection, we devised one generic algorithm with an extensible
set of instancePatterns, which goes through the ontology to find axiom matches (Algo-
rithm 1). Each supported pattern has its own tailored algorithm; the one for the RR OP
is included in Algorithm 2. Then, with the set of patterns found in the input ontology, it
applies the pattern-specific substitutions.

Tooling for Common Logic is not as widespread as the software ecosystem of OWL.
We resorted to the CLIF parser from HETS, the Heterogeneous ToolSet [28]. The proof-
of-concept was implemented mainly in Python; however, since the only available CLIF
parser useful for the task was implemented in Haskell, the generator creates and compiles
Haskell programs for identifying axiom instances.

The correctness of the implementation has been evaluated against a series of syn-
thetic test ontologies containing individual instances of the currently supported patterns.
Here, we illustrate the algorithms for the running example.

4.2. Walking fully through an example

Let us take as example an ontology containing the axioms as listed at position 1⃝ in
Fig. 3. Running Algorithm 1, it calls Algorithm 2, which finds this to be a formula in-
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Figure 2. Proof-of-Concept pipeline architecture for the ontology pattern substitution. CDP, COP, CRA,
PCOP, QDP, and RR are the abbreviations of the pattern substitutions currently included in the architectures
(see text for details), which is, by design, extensible to additional substitution patterns.

Algorithm 1 Axiom instance detection
Require: sentences, instancePatterns

1: procedure FINDAXIOMINSTANCES(axioms, instancePatterns)
2: m← /0
3: for s ∈ axioms do
4: for (name, p) ∈ instancePatterns do
5: if s matches p then
6: vars← variables extracted from s ▷ by pattern matching
7: m← m

⋃
{(name,vars)}

8: end if
9: end for

10: end for
11: end procedure

stance for RR and isolates the variables, after which the pattern instance checker finds
that it is a pattern instance, and generates the substitution for it, and the substitution can
be performed in turn.

The relevant function in the axiom checker matches on the syntactic structure of
the axiom and ensures that the role of the second component of the and inside the first
exists has the name PC, and returns the formula name and list of variables; see 2⃝ in
Fig. 3. The output from the axiom checking step is as follows:

INSTANCE

Just ("RR_f1 ",[" Person","POB"])

(forall (x) (if (Person x) (POB x)))

INSTANCE

Just ("RR_f2 ",[" Employee","SOB"])

(forall (x) (if (Employee x) (SOB x)))
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Algorithm 2 Get RR pattern instances
Require: matches

1: procedure GETRR(matches)
2: instances← /0
3: S f 3← f ilter(matches,name = ”RR f 3”)
4: for f3 ∈ S f 3 do
5: f1, f2 = ⟨⟩,⟨⟩
6: for ⟨name,ob js,ax⟩ ∈ matches do
7: if name = ”RR f 1”∧ob js[0] = f3.ob js[1] then
8: f1← ⟨name,ob js,ax⟩
9: end if

10: if name = ”RR f 2”∧ob js[0] = f3.ob js[0] then
11: f2← ⟨name,ob js,ax⟩
12: end if
13: if f1 ̸= ⟨⟩∧ f2 ̸= ⟨⟩ then
14: instance← ⟨”RR”, f3.ob js,{ f1.ax, f2.ax, f3.ax}⟩
15: instances← instances∪{instance}
16: end if
17: end for
18: end for
19: return instances
20: end procedure

Algorithm 3 Apply substitutions
Require: substitutions,ontology

1: procedure SUBPATT(substitutions,ontology)
2: Oc← copy(ontology)
3: for ⟨command,axiom⟩ ∈ substitutions do
4: if command = DELET E then
5: Replace axiom in Oc with /0
6: else if command = ADD then
7: Append axiom to Oc
8: end if
9: end for

10: return Oc
11: end procedure

INSTANCE

Just ("RR_f3 ",[" Employee","Person","OGD"])

(forall (x) (if (Employee x)

(exists (y) (and (Person y) (OGD x y)))))

The INSTANCE line marks the start of a new instance, followed by the particular
formula identified and the variables extracted from it, and thereafter the exact text of the
axiom identified (interrupted only by the next instance). When this is processed in the
next stage, the function to identify RR instances checks for matches on RR f1, RR f2, and
RR f3 and adds to the list of valid pattern instances if the extracted variables match, after
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Figure 3. Proof-of-Concept tool applied to the running example, with key steps indicated (see text for details).

which the substitutions are generated (see 3⃝ in Fig. 3) These are applied in sequence to
the input ontology, rendering the output ontology (see 4⃝ in Fig. 3).

4.3. Evaluation

The aim of the evaluation is to ascertain the correct functioning of the OP substitution
architecture.

Our evaluation is carried out in two parts. We evaluate the full pipeline against a
set of synthetic ontologies containing valid instances of each pattern and against a set of
DOLCE-aligned ontologies converted from OWL to CLIF.

4.3.1. Materials

To ensure that each pattern is tested from detection through substitution, ontologies
which are both guaranteed to contain the patterns and for which a correct substitution is
easily predictable are necessary. To this end a set of test ontologies was created manually
in CLIF, one per pattern containing one instance of that pattern, and one larger ontology
combining them. The former contain minimal axioms necessary to constitute a pattern
instance, while the latter contains the concatenation of all the individual patterns. The
combined synthetic ontology was carefully constructed to ensure that various phenom-
ena do not affect pattern detection or substitution, notably: interlacing axioms from vari-
ous patterns to avoid grouping, the use of additional spurious axioms with similar struc-
ture to those expected to match, and use of the same class name in axioms of multiple
patterns.
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For the second part of the evaluation, a collection of DOLCE-aligned ontologies was
sourced from the corpus2 used in testing SUGOI [21], which was used to:

1. assess the occurrence of these patterns in real-world ontologies (and thus the im-
mediate applicability of these pattern alignments);

2. ensure that the conversion pipeline conserves patterns present in OWL ontologies,
allowing them to be detected.

Three of the 12 ontologies in the SUGOI DOLCE-aligned corpus failed to parse in HETS

and thus could not be converted into CLIF ontologies, leaving nine with which to evalu-
ate. The largest of them is a version of the data mining optimization ontology (DMOP).

4.3.2. Methodology

The test procedure for each synthetic test ontology is as follows:
1. Normalise the ontology text
2. Apply axiom instance finder binary for target pattern
3. Apply substitution generator to valid axiom instances
4. Run substitution commands over normalised input ontology
5. Compare output ontology with predicted result

The DOLCE-aligned ontologies are encoded in OWL, and so the above procedure is
preceded by a step to first ‘0. convert the ontology from OWL to CLIF using HETS’
and step 5 is replaced by ‘5. Inspect output and discuss’. Conversion with HETS was
done with manual assistance as its output format is incompatible with its input parser,
and as such some portions of the output required manual removal. The remainder of the
process from normalisation of the CLIF representation through substitution was timed
end-to-end using the bash time command, with the real time recorded to include both
processing and I/O.

4.3.3. Results

The extraction of axioms and pattern instances, and computation and execution of sub-
stitutions are successful over all input ontologies. Fig. 3 displays the process in action
for the RR pattern used in the running example. Furthermore, the execution times for
both the synthetic and real-world ontologies are included in Table 2, demonstrating the
tractability of the syntactic approach with FOL ontologies.

Of the real-world ontologies, MDMOP matched the CDP pattern in three places,
generating three substitutions. The CDP pattern’s original formulation in Description
Logics refers to data properties, and thus is less applicable in FOL. The structure is
nonetheless preserved upon conversion to FOL and is both detected and substituted.

To test that other patterns would also be found in these real-world ontologies, an
instance of the RR pattern was introduced to MSceneOntology and the steps above re-
peated. The axioms added to the OWL ontology prior to conversion:

Plant⊑ agentive-physical-object

PetPlant⊑ agentive-social-object

PetPlant⊑ ∃generically-dependent-on.Plant

2Available at: http://www.thezfiles.co.za/ROMULUS/ontologyInterchange.html

http://www.thezfiles.co.za/ROMULUS/ontologyInterchange.html
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The pattern was detected and correctly substituted:

COMMAND: DELETE

(forall (a) (if (Plant a) (agentive -physical -object a)))

COMMAND: DELETE

(forall (a) (if (PetPlant a) (agentive -social -object a)))

COMMAND: DELETE

(forall (a) (if (PetPlant a) (exists (b)

(and (generically -dependent -on a b) (Plant b)))))

COMMAND: ADD

(forall (x) (if (PetPlant x) (Plant x)))

To account for this apparent lack of pattern instances, we investigate the usage of
the key classes and relationships from DOLCE in the ontologies by counting usage as
assessed by Protégé for the original OWL files. As this metric includes imports, imported
axioms from DOLCE that do not contain references to the domain ontology nonetheless
contribute. As such, the presence of axioms containing the same classes as a pattern
confirms only that the pattern may possibly be present. This data is presented in Table 1.

Inspecting the alignments, we observe several interesting cases. One concerns im-
proper DOLCE reuse. For instance, and besides that the Naive Animal Ontology is mul-
tilingual and so most IRIs use a UUID and encode names in labels, DOLCE terms must
have been manually added as one was spelled incorrectly (as Non-Agentive Phisical-
Object), and thus not picked up by our algorithm. Another issue is that several ontologies
appear not to import DOLCE correctly, or have incorrect representations of the DOLCE
taxonomy, such as physical object not having been declared a subclass of physical en-
durant in the Spatial Action ontology, but which it is in DOLCE. Also, in some cases,
only a very small fragment of DOLCE turned out to have been reused, such as only phys-
ical object, physical quality and non-physical endurant out of the 37 classes in DOLCE,
neither of which participates directly in either of the six patterns.

In addition, since the tool is using syntactic comparison, a granularity mismatch can
cause a pattern to fail to be identified. As such, pattern specifications would require all
relevant subclasses (here, all subclasses of the class specified within the pattern which
are within the DOLCE taxonomy) to be included in the constraint specification for the
pattern. Our tool can be configured to do this, but additional tooling is required to stream-
line the pattern specification process to make pattern specification manageable when the
list of subclasses is long.

5. Discussion

The current algorithms cover the Class vs Object Property (COP), Perdurant Class vs
Object Property (PCOP), Class vs Data Property (CDP), Qualities vs Data Properties
(QDP), Representing Roles (RR), and Class-Relationship-Attribute (CRA) pattern pairs,
and can execute the substitutions for these correctly. They work in isolation, but axiom
patterns may overlap in real world ontologies. The current insights in ontology patterns,
including ontology design patterns, do not provide sufficient insights into what to do in
those cases. This may require a human-in-the-loop during the substitution process, or a
ranking of priority on the pattern pairs. In addition, variability in axiom encoding limits
simple comparison, requiring more sophisticated pattern matching.
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Table 1. SUGOI corpus (DOLCE-aligned ontologies only) with the usage of relevant classes and relationships
in the ontology. ED: endurant, PD: perdurant, APO: agentive-physical-object, ASO: agentive-social-object, pc:
participates-in, gd: generically-dependent-on.

Ontology ED PD APO ASO pc gd hasDataValue has-quality has-quale

DMOP 44 28 - - - 18 14 310 166
MDMOP 44 28 - - - 18 14 310 166
MNaive animal
ontology2

86 60 10 - 18 14 - 40 34

MOntoDerm 86 60 - - 18 14 - 36 12
MSEGO 86 62 - 4 20 14 - 38 12
SceneOntology - - - - 12 44 - 10 9
MSceneOntology - - - - 18 18 - 36 12
PhysicalEntity - - - - - 6 - - -
SpatialAction - - - - - - - - -

Table 2. CLIF corpus of ontologies: axiom count and the time taken per pattern (ms).

ontology # axioms CDP COP CRA PCOP QDP RR

Synthetic CDP 4 238
Synthetic COP 1 229
Synthetic CRA 1 214
Synthetic PCOP 4 219
Synthetic QDP 1 215
Synthetic RR 3 213
Synthetic combined 16 196 193 190 215 231 232
DMOP 1174 469 448 462 461 469 467
MDMOP 3934 994 978 1003 1029 1010 1025
MNaive animal ontology2 1767 1099 1084 1183 1137 1129 1133
MOntoDerm 5.3 1318 517 448 482 458 461 431
MSEGOv3 971 405 400 398 431 395 447
MSceneOntology 1318 503 458 505 499 487 457
PhysicalEntity 320 271 281 261 280 289 286
SceneOntology 374 297 309 287 279 290 284
SpatialAction 85 237 225 220 234 218 214

Other considerations include the technologies used. Ontologies already in CLIF ex-
hibited version mismatch. The change in encodings between the first [31] and second
[32] edition practically means that being a .clif file is not enough to ensure that it can
be parsed successfully. HETS’ CLIF parser applies to first edition CLIF files, and thus so
does our tool. More generally, while the expressiveness is a distinct advantage regarding
pattern principles and precision of substitutions, tooling for CLIF (and FOL more gener-
ally) is limited. In addition, the representations are sufficiently heterogeneous that oper-
ating on native CLIF ontologies (cf. the output of OWL-to-FOL tools) requires different
treatment depending on which CLIF version is being used and whether the ontology is
CLIF-native or is part of a DOL ontology.

Finally, it is noteworthy that a corpus of DOLCE-aligned ontologies contains so few
instances of the core ontology design patterns expected. In some cases technical obsta-
cles such as the use of UUID IRIs or import failures prevented the assessment of the
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presence of these patterns, but more research is necessary to determine why they are
not present in the rest and, subsequently, how they can be aligned more systematically
and comprehensively. In in broader view, this then also may facilitate ontology qual-
ity, promoting general, application-independent ontologies for the sought-after interop-
erability in a principled theory-based “foundational ontology style”, and making it eas-
ier for ontology-driven information system developers through an automatic conversion
into an ‘applied style” of modelling that more closely matches the needs of a particular
application whilst maintaining the links for interoperability and reuse.

6. Conclusion

We have introduced an ontology pattern substitution framework that enables alternative
approaches to OP substitution, extensible to multiple logics and substitution patterns.
This was realised in a proof-of-concept tool that applies syntactic pattern matching al-
gorithms to successfully perform substitutions on FOL ontologies for six pattern align-
ments. Evaluation showed correctness of encoding and it revealed limited practical use
of well-known foundational ontology-inspired modelling patterns for those ontologies
aligned to DOLCE.

Future work includes permutations, such as devising similar foundational ontology-
inspired patterns for BFO and UFO, and evaluation with a corresponding set of real-
world ontologies. The approach may also be extended to work in different scenarios,
such as expanding the algorithms to include identification of syntactically equivalent
axioms (a∧b vs b∧a, de Morgan, etc.) and embedding in other applications, such as the
swapping an entire foundational ontology for another as in SUGOI [21] and developing
a GUI with feedback for domain experts.
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