
Full Traceability and Provenance for

Knowledge Graphs

Henrik DIBOWSKIa,1
a

 Robert Bosch GmbH, Bosch Research, Bosch Center for Artificial Intelligence, 71272

Renningen, Germany

ORCiD ID: Henrik Dibowski https://orcid.org/0000-0002-9672-2387

Abstract. Knowledge graphs (KGs) continue spreading into industrial use cases due

to their advantages and superiority over classical data representations. A problem
that has not yet adequately been solved for KGs is the traceability and provenance

of changes, which can be required in an enterprise or by regulations. KGs typically

contain the current snapshot of data valid at a certain moment in time only. Changes
over time are usually not recorded and no change history exists. The lack of suitable

and scalable traceability solutions hinders the wider application of KGs. This paper

presents a traceability and provenance solution for KGs, which can track all changes
of a KG on triple level. It comprises a provenance engine that intercepts

SPARQL/Update queries; PROV-STAR, an RDF-star enabled light-weight

extension of the Provenance Ontology (PROV-O) for representing changes and their
provenance; and a SPARQL query transformation approach for tracking the changes

on a separate provenance KG with SPARQL-star queries. The solution supports full

traceability of all changes, on the lowest possible level of triples, with each change
being comprehended with detailed provenance information. From the provenance

KG a detailed change history can be retrieved, and any past version of the KG can

be restored with a single query. The implementation and validation have shown that
changes can be tracked at runtime during the normal operation of a KG. Furthermore,

the solution is scalable to large KGs and frequent updates, as only the delta of each

change is stored.

Keywords. Knowledge Graph, Ontology, Traceability, Provenance, Change

History, RDF-star, SPARQL-star

1. Introduction

The popularity and application of knowledge graphs (KGs) have strongly increased over

the past years, with KGs spreading further into industrial use cases due to their

advantages and superiority over classical data representations. KGs typically contain a

snapshot of information that is valid at a certain moment in time. Driven by users,

applications, algorithms, data ingestion pipelines etc. the information changes over time,

which effectively means that new triples are inserted or existing triples are deleted. In

RDF triple stores, information can be changed by SPARQL/Update queries. If not

explicitly taken care of, no change history is available for a KG, i.e. all older states and

changes over time are lost, but only the current snapshot of data remains. This prohibits

the traceability of changes, provisioning of detailed provenance information of each

1 Corresponding Author: Henrik Dibowski, henrik.dibowski@de.bosch.com.

https://orcid.org/0000-0002-9672-2387

change, undo and repair functionality, the recovery of old states, insights about the

evolution of information (and things) over time and more, which are highly desirable

functionalities. For many applications and use cases it is even a hard regulatory or

enterprise-level requirement to have a change history available.

A few solutions and approaches exist that can record a change history and that try

to overcome the above limitations, but none is capable to solve all limitations. Their data

representation is often inefficient, the unnatural representation of triples is cumbersome

to update and query, and/or provenance information is missing.

This paper presents a novel traceability and provenance solution for KGs, which can

track all changes of a KG on triple level and supports full traceability. It comprises

several main contributions: 1) a provenance engine module acting as a middleware that

intercepts SPARQL/Update queries; 2) PROV-STAR, an RDF-star enabled lightweight

extension of the Provenance Ontology (PROV-O) for representing changes and their

provenance; and 3) a SPARQL query transformation approach for tracking the changes

on a separate provenance KG with SPARQL-star queries. From the provenance KG a

detailed change history can be retrieved (change history functionality), and any past

version of the KG can be restored from it with a single query (recovery functionality).

The remaining paper is structured as follows: the related work is described in Section

2, followed by a description of the solution in Section 3, and its evaluation in Section 4.

Section 5 concludes the paper and provides an outlook on future research directions.

2. Related Work

Traditionally, provenance has been used on time-stamping a digital document [1], to

prove lineage of data in scientific computing [2], for scientific workflows [3], and more

lately to provide metadata about the origin of data [4], [5].

Our understanding of provenance is how the W3C Provenance Working Group

defines provenance, namely as the “information about entities, activities and people

involved in producing a piece of data or thing, which can be used to form assessments

about its quality, reliability or trustworthiness” [6]. The W3C PROV specifications

include the PROV data model (PROV-DM) [6] and the PROV Ontology (PROV-O) [7],

an OWL2 ontology that allows the data model to be mapped to RDF, TRiG, and Turtle.

For other definitions of provenance and how they evolved see [8].

Traceability refers to the degree to “which data is well documented, verifiable, and

easily attributed to a source” [9]. This dimension is highly related to provenance

metadata. For instance, data has metadata of the source, of the changes made, etc [10].

Expressing machine-interpretable statements in the form of subject-predicate-object

triples is a well-established practice for capturing semantics of structured data. However,

the standard used for representing these triples, RDF, inherently lacks the mechanism to

attach provenance data, which would be crucial to make automatically generated and/or

processed data authoritative [11].

One way to overcome this limitation and to define metadata with RDF is reification,

which is also used for modeling n-ary relations [12]. It allows us to express statements

about statements, for instance provenance. The RDF database GraphDB offers a “data

history and versioning” plugin, which enables users to access past states of a database

through versioning of the RDF data model level [13]. Although the change history is

saved in a relational database table, it applies query transformation and reification to

allow querying the history with SPARQL. Provenance information is not recorded.

Eccenca Corporate Memory, a commercial semantic data management software,

supports the versioning of graph changes in a separate versioning graph via reification

[14]. It therefore applies the changeset vocabulary, which defines a set of terms for

describing changes to resource descriptions [15]. The delta between two versions of a

resource is represented by two sets of triples: additions and removals. Triples therein are

represented as reified RDF statements. Some of the downsides of reification is the high

amount of triples needed, as it requires minimum four additional triples per reified

statement [16], and the unnatural representation of triples, which is cumbersome and

complex to read and write with SPARQL.

RDF document-level provenance is realized by TerminusDB: a document-oriented

in-memory graph database with version control and collaboration model available under

Apache 2.0 license [17]. TerminusDB allows multiple versions of a KG to be stored

efficiently, with deltas containing relative additions and deletions, as with GIT. It can

query past commits, but therefore requires to use GIT like commands for creating a

branch, for computing the difference between branches etc. The offered granularity is

low, with commits typically comprising larger sets of changes on a single file.

Named graphs have been proposed in the past to overcome the issues with RDF

reification, or knowledge-based specific extensions including quads and contexts [18].

Furthermore, the lossless decomposition of RDF graphs and tracking their provenance

using RDF molecules, which is claimed to be the finest and lossless component of an

RDF graph, has been proposed [19]. The level of granularity of RDF molecules is

between RDF document level and RDF triple level. An approach to create a summary

graph capturing temporal evolution of entities across different versions of a KG using

RDF molecules is described in [20]. A clear disadvantage of RDF molecules is the need

to apply a complex decomposition algorithm that requires to query data, which does not

scale for large KGs and which is not useable for runtime-tracking of provenance of a KG.

Hartig proposed an alternate approach to RDF reification called RDF-star (or

alternatively RDF*), which embeds triples into (metadata) triples as the subject or object

[21]. RDF-star is an extension of RDF's conceptual data model and concrete syntaxes,

which enables the creation of concise triples that reference other triples as the subject

and object resources [22]. Triples that include a triple as subject or an object are known

as RDF-star triples or quoted triple patterns, and the included triples as embedded triples

or quoted triples.

RDF-star can accomplish triple-level provenance, i.e. the provisioning of provenance

information for RDF triples, which is adequate for a number of applications. This is the

most granular provenance level for RDF data, because it can represent the provenance

of statements, which is adequate for a number of applications [11]. Only little research

has been done in the direction of representing metadata with RDF-star, with the most

mature approach being StarVers [22]. It applies the NQT-SP temporal metadata

representation model, i.e. nested quoted triples, to bundle the time of creation and time

of deletion of a triple together, as can be seen in Figure 1. By doing so, for each triple

the time interval when it is or was valid is explicitly given. One disadvantage of using

nested quoted triples is query performance, as many RDF-star systems are not optimized

for it or cannot handle arbitrary nesting levels. StarVers furthermore requires the update

of existing triples and the replacement of the expiry date upon changes, which impacts

the performance. Most importantly, StarVers does not support provenance.

<< << subject pred object >> vers:valid_from t1 >> vers:valid_until tE .

Figure 1. StarVers: Annotating a triple with two temporal properties using nested quoted triples.

3. Full Traceability and Provenance Solution

This paper presents a solution that realizes a full traceability of all changes on a KG in

the lowest possible granularity, i.e. on triple level, and their provenance. The overall

solution and workflow is shown in Figure 2 and explained in the following. It

comprises several main contributions:

1. Provenance engine: a software module and middleware that realizes the traceability

functionality. It intercepts and transforms incoming SPARQL/Update queries.

2. PROV-STAR Ontology: an RDF-star enabled lightweight extension of the PROV

Ontology for representing changes and provenance on triple level. See Section 3.1.

3. Provenance knowledge graph: Applies the PROV-STAR Ontology and represents the

entire changes on the original KG with RDF-star. See Section 3.2.

4. Query transformation approach: An approach for transforming SPARQL/Update

queries into provenance-enabled SPARQL-star/Update queries for tracking the

changes on the provenance KG. See Section 3.3.

5. Change history functionality: retrieving and filtering the change history with

SPARQL-star. See Section 3.4.

6. Recovery functionality: restoring any old version of the original KG with SPARQL-

star. See Section 3.5.

The core idea is to save a history of all changes on a KG, called the “original knowledge

graph” (original KG), in a separate graph, called the “provenance knowledge graph”

(provenance KG). The provenance KG is a mirror of the original KG enriched with the

entire history of changes and rich provenance information. It can track each individual

update operation on the KG on triple-level.

The solution applies RDF-star [22] for stating provenance information on each

added and deleted triple and hence accomplishes the lowest possible granularity. The

paper introduces the PROV-STAR Ontology, a lightweight extension of PROV-O [7] by

a few new classes and an RDF-star enabled property. By that enhancement of PROV-O,

the W3C standard can now be used for representing provenance on triple-level.

At the core of the solution shown in Figure 2 is the provenance engine, which is a

middleware between the user and a SPARQL engine. All update operations, i.e. all

SPARQL/Update queries, to be executed on the original KG are intercepted and

transformed by the provenance engine. Therefore, the provenance engine realizes the

following steps:

1. It intercepts all incoming SPARQL/Update queries.

2. It forwards the queries to the original KG, without applying changes.

3. It transforms queries with the query transformation approach and executes the

provenance-enabled SPARQL-star/Update queries on the provenance KG.

The provenance engine thus makes sure that all changes on the original KG are

completely tracked live and at runtime on the provenance KG, either in a separate dataset,

or in a named graph of the original KG. The rationale for mirroring and enriching all

information in the provenance KG, instead of enriching the original KG itself, is to make

the provenance tracking an optional feature, and to assure the same performance of

operations on the original KG, without negative impact on the querying performance or

available storage capacity.

Figure 2. Full traceability of knowledge graphs – Solution overview and workflow.

By the chosen representation of the provenance KG with RDF-star and the PROV-STAR

Ontology, all past information can be queried natively with SPARQL-star. With a

SPARQL-star query the change history can be retrieved and filtered (change history

functionality, see Section 3.4), or any past version of the original KG can be recovered

(recovery functionality, see Section 3.5)

In the following sections, the different main contributions are explained in detail.

3.1. RDF-Star Traceability and Provenance Ontology

PROV-O [7] is a W3C standardized provenance vocabulary for representing provenance

information in RDF. As pointed out in Section 2, RDF is not directly capable of

describing metadata for triples. Hence, when using RDF, the PROV-O can natively

represent provenance information for the nodes of a KG, but expressing provenance for

property values requires workarounds such as reification, or RDF-star. The traceability

solution applies and extends PROV-O with the capability to represent provenance

information for RDF triples, the atomic pieces of information in a KG and hence the

lowest possible granularity. The PROV-STAR Ontology introduced in this paper

therefore extends PROV-O by three new classes and one new property, as can be seen in

Figure 3 as UML class diagram. Figure 9 (see Appendix) reveals the source code of the

PROV-STAR Ontology in Turtle.

With the PROV-STAR Ontology we intend to be compliant with PROV-O to the

highest possible extent and use the available concepts whenever possible. The main

classes prov:Entity, prov:Activity and prov:Agent, along with the object

properties prov:wasGeneratedBy, prov:wasInvalidatedBy, prov:was-
AssociatedWith and the datatype properties prov:generatedAtTime and

prov:invalidatedAtTime of PROV-O remain the core vocabulary for

representing provenance information. The PROV-STAR Ontology refines the class

prov:Entity by three subclasses:

2

User, Application,
Backend Operation

Endpoint

Original Knowledge
Graph (RDF)

2) Forward query

to original KG

SPARQL/Update query

Provenance Graph
(RDF-star)

Endpoint

Provenance-enabled SPARQL-
star/Update query for tracking
the changes and their
provenance

Contains only

the currently

valid triples

Contains ALL triples that

ever existed, with rich

provenance information.

Applies PROV-STAR

Ontology.

Prove-
nance
Engine

SPARQL/Update query

1) Intercept ALL incoming

SPARQL/Update queries

3) Transform query and execute

on provenance graph

PROV-
STAR

Ontology

• provs:TripleChangeSet: Direct subclass of prov:Entity. Constitutes a

class for representing sets of triples that were changed in an update operation.

• provs:TripleGenerationSet: A subclass of provs:TripleChangeSet.

For representing sets of triples that were inserted.

• provs:TripleInvalidationSet: A subclass of provs:TripleChange-

Set, and sibling class of provs:TripleGenerationSet. For representing sets

of triples that were deleted

The new object property provs:belongsTo is RDF-star enabled, meaning that it can

be used for attaching provenance facts, i.e. instances of provs:Triple-

GenerationSet and provs:TripleInvalidationSet, to the added and

deleted triples. The triples herein appear as embedded triples in the subject position.

Another extension of PROV-O is the class provs:Query (see Figure 3), which

optionally allows for attaching the SPARQL/Update query that caused the change as a

string to the activity in order to save it along with the changed triples, if needed.

Figure 3. The PROV-STAR Ontology: an RDF-star enabled lightweight extension of the PROV Ontology.

Prefix “prov”: PROV Ontology, prefix “provs”: PROV-STAR Ontology.

3.2. RDF-star Representation of Changes in the Provenance Knowledge Graph

The atomic pieces of information in a KG are RDF triples, comprising a subject,

predicate and object. This is the smallest granularity for representing information, and

on which level changes can happen. The PROV-STAR Ontology (see Section 3.1)

provides the vocabulary for representing changes on this smallest granularity of triples.

Let’s take a look at how changes on a KG are represented in RDF-star with the

PROV-STAR Ontology. In Figure 4 a SPARQL/Update query is given comprising a

DELETE DATA and an INSERT DATA subquery. The query changes the ‘is released’

status of some appliance control unit instance from ‘false’ to ‘true’ and adds its ‘release

date’. The DELETE DATA subquery therefore deletes one triple, namely the value of

the o:isReleased datatype property, and the INSERT DATA subquery asserts the

new value for it, and the value for the o:releaseDate datatype property.

The effects of running the query on the original KG are represented with the PROV-

STAR Ontology in RDF-star in the provenance KG, as shown in Figure 5. The deleted

prov:Activity

rdfs:label: xsd:string

<<prov:Entity>>

provs:TripleChangeSet

...

provs:belongsTo

provs:TripleGenerationSet

prov:generatedAtTime: xsd:DateTime

<<subject predicate object>>

<<subject predicate object>>

<<subject predicate object>>

<<subject predicate object>>

<<subject predicate object>>

...

provs:TripleInvalidationSet

prov:invalidatedAtTime: xsd:DateTime

prov:Agent

rdfs:label: xsd:string

prov:wasGeneratedBy
prov:wasInvalidatedBy

prov:wasAssociatedWith

<<prov:Entity>>

provs:Query

queryString: xsd:string
prov:used

RDF-star Embedded Triples

The created triples

of an update

The removed

triples of an

update

The PROV-O

Triangle

The PROV-O

Triangle

The PROV-O

Triangle

One instance can represent a set of

triples, by relating the triples as RDF-

star embedded triples via the

property provs:belongsTo to it

triple appears as RDF-star embedded triple in the subject position of another triple. It

associates it via the object property provs:belongsTo with a new

provs:TripleInvalidationSet instance. The two inserted triples are associated

as embedded triples with a new provs:TripleGenerationSet instance. The

remaining triples define details of the provs:TripleInvalidationSet and

provs:TripleGenerationSet instances, such as the time of the change, as well

as a prov:Activity instance representing the activity that has caused the change,

and a prov:Agent instance representing the person that has triggered the change.

With this representation, a precise chronological change history of all triples that

were deleted and inserted in a KG over time, along with provenance information

comprising the time of change, activity and agent, can be saved on the provenance KG.

All changes that ever happen can be recorded and traced back.

DELETE DATA {

 d:ACU_0b9aff9c o:isReleased false .

};

INSERT DATA {

 d:ACU_0b9aff9c o:isReleased true .

 d:ACU_0b9aff9c o:releaseDate "2023-11-12"^^xsd:date .

}

Figure 4. SPARQL/Update example query. It changes the ‘is released’ flag of an appliance control unit

instance from ‘false’ to ‘true’ and adds a ‘release date’ value.

<< d:ACU_0b9aff9c o:isReleased false >>
 provs:belongsTo s:TripleInvalidationSet_2834417e .

<< d:ACU_0b9aff9c o:isReleased true >>
 provs:belongsTo s:TripleGenerationSet_2834417e .

<< d:ACU_0b9aff9c o:releaseDate "2023-11-12"^^xsd:date >>
 provs:belongsTo s:TripleGenerationSet_2834417e .

s:TripleInvalidationSet_2834417e

 rdf:type provs:TripleInvalidationSet ;

 prov:invalidatedAtTime "2023-11-13T12:36:18.444Z"^^xsd:dateTime ;

 prov:wasInvalidatedBy s:Activity_2834417e;

.

s:TripleGenerationSet_2834417e

 rdf:type provs:TripleGenerationSet ;

 prov:generatedAtTime "2023-11-13T12:36:18.444Z"^^xsd:dateTime ;

 prov:wasGeneratedBy s:Activity_2834417e ;

.
s:Activity_2834417e

 rdf:type prov:Activity ;

 rdfs:label "released ACU and added a release date" ;

 prov:wasAssociatedWith s:Agent_Peter_Kampl ;

.

s:Agent_Peter_Kampl

 rdf:type prov:Agent ;
 rdfs:label "Peter Kampl" ;

.

Figure 5. RDF-star representation of the effect of the query from Figure 4, stored in the provenance knowledge

graph.

3.3. Query Transformation Approach for Change Tracking

For saving the history of all changes using the RDF-star representation introduced in the

previous section, a query transformation approach is applied by the provenance engine.

An incoming SPARQL/Update query is transformed into a provenance-enabled

SPARQL-star/Update query, which can record the change in the provenance KG.

The query transformation is based on a predefined SPARQL-star INSERT DATA

query template, into which the updated triples as well as provenance information need to

be inserted. This is straightforward and can be implemented in a programming language

of choice. The SPARQL-star INSERT DATA query template, already customized for

the query from Figure 4, is presented in Figure 6. When executed on the provenance KG,

this query generates the triples shown in Figure 5.

INSERT DATA {

 << d:ACU_0b9aff9c o:isReleased false >>

 provs:belongsTo s:TripleInvalidationSet_2834417e.

 << d:ACU_0b9aff9c o:isReleased true >>

 provs:belongsTo s:TripleGenerationSet_2834417e.

 << d:ACU_0b9aff9c o:releaseDate "2023-11-12"^^xsd:date >>

 provs:belongsTo s:TripleGenerationSet_2834417e.

 s:TripleInvalidationSet_2834417e rdf:type provs:TripleInvalidationSet.

 s:TripleInvalidationSet_2834417e prov:invalidatedAtTime

 "2023-11-13T12:36:18.444Z"^^xsd:dateTime.

 s:TripleInvalidationSet_2834417e prov:wasInvalidatedBy

 s:Activity_2834417e.

 s:TripleGenerationSet_2834417e rdf:type provs:TripleGenerationSet.

 s:TripleGenerationSet_2834417e prov:generatedAtTime

 "2023-11-13T12:36:18.444Z"^^xsd:dateTime.

 s:TripleGenerationSet_2834417e prov:wasGeneratedBy

 s:Activity_2834417e.

 s:Activity_2834417e rdf:type prov:Activity.

 s:Activity_2834417e rdfs:label

 "released ACU and added a release date".

 s:Activity_2834417e prov:wasAssociatedWith s:Agent_Peter_Kampl.

 s:Agent_Peter_Kampl rdf:type prov:Agent.

 s:Agent_Peter_Kampl rdfs:label "Peter Kampl".

}

Figure 6. Provenance-enabled SPARQL-star INSERT DATA query (template) for saving a change on the

provenance knowledge graph, on the example of the query from Figure 4. The grey and yellow highlighted

information contain prefilled example data, see Figure 5.

The query transformation requires to insert the deleted and inserted triples into the first

lines (grey highlighted information) as embedded triples, each having a

provs:belongsTo relationship to one and the same provs:Triple-

InvalidationSet and provs:TripleGenerationSet instance. The IRIs of

the two instances, and all other used instances, need to be unique IRIs, which can be

accomplished by attaching a unique string to the end of their instance identifiers, here

“2834417e”. The following lines define the details of the two instances, i.e. their

rdf:type, the time of change (here the time when the original KG got updated is to be

inserted), and a reference to an activity instance. The activity itself comes with a label

that describes the change, and it refers to the agent it was triggered by. The name of the

agent, either a person or an application, is to be provided as string. When executed on

the provenance KG, this query generates the triples shown in Figure 5.

The generated INSERT DATA queries are very efficient as they simply push data

without querying or updating any existing data. The queries can be executed

independently and asynchronously on the provenance KG, i.e. it is not required to follow

the chronological order of the changes on the original KG. The time of change stated in

the query ensures that no matter in what sequence the queries are executed, the

chronological order is preserved in the change history.

3.4. Change History of a Knowledge Graph

With the described solution, all changes applied to a KG can be saved in the provenance

KG, down to each individual triple. This valuable information can be queried with

SPARQL-star and displayed, for instance in a UI. The SPARQL-star query shown in

Figure 7 can just do that: it provides all changes that happened after a given moment in

time, chronologically sorted along the time of change, starting with the latest change. It

returns the time of change, the action (i.e. deletion of a triple, or insertion of a triple), the

subject, predicate and object of the changed triple, and provenance information, i.e. the

name of the agent responsible for the change, and a description of the action. This can

be seen in Table 1 for the example data given in Figure 5.

Table 1. Change history example, retrieved with the SPARQL-star query from Figure 7.

time action Subject pred object agentLabel

2023-11-
13T12:36:18.444Z

CREATED d:ACU_0b9aff9c o:isReleased true Peter Kampl

2023-11-

13T12:36:18.444Z
CREATED d:ACU_0b9aff9c o:releaseDate 2023-11-12 Peter Kampl

2023-11-

13T12:36:18.444Z
DELETED d:ACU_0b9aff9c o:isReleased false Peter Kampl

SELECT ?time ?action ?subject ?pred ?object ?agentLabel ?activityLabel

WHERE {

 {

 ?tripleChangeSet rdf:type provs:TripleGenerationSet.

 ?tripleChangeSet prov:wasGeneratedBy ?activity.

 ?tripleChangeSet prov:generatedAtTime ?time.

 FILTER (?time > "2023-11-13T12:00:00.000Z"^^xsd:dateTime)

 BIND ("CREATED" AS ?action).

 } UNION {

 ?tripleChangeSet rdf:type provs:TripleInvalidationSet.

 ?tripleChangeSet prov:wasInvalidatedBy ?activity.

 ?tripleChangeSet prov:invalidatedAtTime ?time.

 FILTER (?time > "2023-11-13T12:00:00.000Z"^^xsd:dateTime)

 BIND ("DELETED" AS ?action).

 }

 ?activity rdfs:label ?activityLabel.

 ?activity prov:wasAssociatedWith ?agent.

 ?agent rdfs:label ?agentLabel.

 <<?subject ?pred ?object>> provs:belongsTo ?tripleChangeSet.

}

ORDER BY DESC(?time) ?action ?subject ?pred ?object

Figure 7. SPARQL-star query for fetching the history of changes that happened on a KG after a given time,

starting from the latest change. Can be enhanced with additional filtering, e.g. agent, activity, time interval.

3.5. Recovery of Past Versions of a Knowledge Graph

Besides querying the change history of a KG, the change tracking approach supports an

even more powerful functionality: the recovery of any past version of a KG. Since all

changes that ever happened are completely traced on the provenance KG, all information

is available for restoring any past version from there. This can be easily accomplished

by executing the SPARQL-star query given in Figure 8 on the provenance KG.

The query returns a graph that contains all triples that existed at a given moment in

time (variable ?pastDateTime). It therefore iterates over all triples that were created

before that time (i.e. instances of provs:TripleGenerationSet with

prov:generatedAtTime values older than ?pastDateTime), and that have not

been invalidated until that time (i.e. there is no provs:TripleInvalidationSet

instance between the time of creation and the given ?pastDateTime which states the

deletion of the triple).

The restored graph is identical with the original KG as it was at that past moment in

time. It can be queried with normal SPARQL queries without any limitations.

CONSTRUCT { ?subject ?pred ?object }

WHERE {

 BIND("2023-08-30T10:30:54.761Z"^^xsd:dateTime AS ?pastDateTime)

 ?tripleGenerationSet a provs:TripleGenerationSet.

 ?tripleGenerationSet prov:generatedAtTime ?timeOfGeneration.

 FILTER (?timeOfGeneration <= ?pastDateTime).

<<?subject ?pred ?object>> provs:belongsTo ?tripleGenerationSet.

FILTER NOT EXISTS {

 <<?subject ?pred ?object>> provs:belongsTo ?tripleInvalidationSet.

 ?tripleInvalidationSet prov:invalidatedAtTime ?timeOfInvalidation.

 FILTER (?timeOfInvalidation > ?timeOfGeneration &&

 ?timeOfInvalidation <= ?pastDateTime)

}

}

Figure 8. SPARQL-star query for recovering a past version of a knowledge graph at a given

time ?pastDateTime from the provenance knowledge graph.

4. Evaluation

This section evaluates the introduced traceability and provenance approach for KGs. It

discusses and demonstrates the main features and reports on findings from the practical

usage. The approach has been fully implemented by our software development teams

and is in use within Bosch.

The main features of the approach are:

1. Full traceability of all changes on a KG

2. The change history of a KG can be saved live at runtime

3. Scalability to large KGs by storing only the delta

4. Past information and its provenance can be retrieved via queries

5. Any past version of a KG can be restored

Feature 1 ensures that all possible updates of a KG, i.e. the insertion and deletion of

triples, can be stored on the provenance KG, such that all changes are fully traceable over

the entire lifetime of a KG. As explained in this paper, the approach can trace changes

on the finest granularity level of triples, with the smallest possible change being just a

single triple. Our implementation could validate that in all respects. This can be

reproduced by anyone interested by applying the data and queries presented in the paper,

which cover all steps of the traceability approach.

The remaining features 2-5 are evaluated in the following with the implemented

solution running on a HPE ProLiant DL380 Gen10 server with 20 Intel Xeon Silver 4114

CPUs at 2.20GHz (40 cores in total), 188 GB RAM, 447 GB SSD and Ubuntu 20.04.6

LTS. We tested the solution with two different triple stores: 1) Stardog, version 9.2.0,

commercial solution, and 2) Apache Jena Fuseki, version 4.10.0, open source.

Table 2 shows details of a provenance KG that was used for the evaluation, along

with certain characteristics. It has a size of 5.15 million triples and comprises the change

history of an original KG comprising 63,799 triples at the latest state. Both datasets

contain data from Bosch Home Comfort, in particular semantic models of residential

heating systems and heat pumps, including their components, hardware, firmware etc.

The provenance KG could be restored from a GIT repository in which all the changes

over the past two years were tracked, with an update interval of one hour between the

individual commits. As Table 2 shows, there were 10,809 changes, with over 5 million

updated triples in total. The number of updated triples per change range from 1 to 500,

with an average of 475.68 updated triples.

Table 2. Provenance Knowledge Graph analyzed in the evaluation and its characteristics.

No. triples
No.

changes

No. updated triples

per change

No. updated triples

in total

Original KG Provenance KG Min Max Average

63,799 5,159,540 10,809 1 500 475.68 5,062,259

Feature 2 enables the use of the traceability solution live at runtime, when users or

applications make changes on a KG. Then the provenance engine can record the change

history on the provenance KG simultaneously. Data only needs to be pushed with an

INSERT DATA query to the provenance KG (see Section 3.3), and it is not required to

query or update existing data. The proposed solution is highly optimized for

simultaneous changes on both KGs and beats comparable solutions, such as StarVers,

which requires changes on outdated triples. We simulated concurrent changes of ten

users, which could be handled by our implementation live at runtime. The query

transformation typically runs in just a few milliseconds and can be neglected. The

execution time of the generated INSERT DATA query on the provenance KG was

measured in the range of hundred milliseconds to two seconds, as can be seen in Table 3

for two measured example queries: 1) the INSERT DATA query with three updated

triples from Figure 6; 2) a similar INSERT DATA query comprising 500 deleted and

500 inserted triples. This proved sufficient for using it at runtime.

Feature 3 ensures the scalability of the solution to large KGs, as it only needs to store

the delta of each change on the provenance KG. Looking at the ratio between the total

number of updated triples (5,062,259), and the number of triples in the provenance KG

(5,159,540), which is just 1:1.019, it can be seen that the amount of additional triples for

representing the provenance information amounts to only 1.9% of the overall data, in the

example. In general, the amount of the overhead depends on the granularity of the update

operations, whether only a few triples are updated at once, or multiple. In the worst case,

when only one triple is updated, the ratio of triples is 1 (original KG) to 9 triples

(provenance KG), which constitutes a large overhead. With three updated triples (both

deleted and inserted), as in the example of Figure 5, it is 1 to 4 (three updated triples on

original KG against 12 on provenance KG). With 100 updated triples, the triple overhead

is rather small, with a ratio of 100 to 112. The larger the update operations are, the more

efficient is the representation on the provenance KG. With each update, the size of the

provenance KG grows linearly with the number of updated triples. Overall, the proposed

RDF-star representation is very resource efficient. When using reification, for example,

the required triple count would be at least four times higher, as the representation of each

reified triple itself requires minimum four triples. As modern triple stores are capable of

storing and querying even billions of triples efficiently, we presume that the scalability

of our solution to large KGs comprising millions of triples is ensured.

Table 3. Query execution times on the provenance knowledge graph in milliseconds.

Query Fuseki Dataset Stardog Dataset

INSERT DATA query with 3 triples (see Figure 6) 0.101 s 0.152 s

INSERT DATA query with 1000 triples 0.979 s 2.110 s

Change history query (see Figure 7), on interval with

60 updated triples
0.286 s 0.425 s

Change history query, on interval with 1.9M updated

triples, limit 1000
163.7 s 24.949 s

Change history query, on interval with 60 updated

triples, and given subject instance
0.268 s 0.151 s

Change history query, on interval with 1.9M updated

triples, and given subject instance, limit 1000
3.809 s 0.179 s

Recovery query with 48K restored triples (see Figure

8)
53.140 s 39.346 s

Feature 4 denotes the capability to query any past information from the provenance KG,

along with provenance information. This was demonstrated in Section 3.4 by means of

a SPARQL-star query (Figure 7). As can be seen in Table 3, the query execution times

can vary significantly, from just 0.286 to 163.7 s. The more triples the update interval

contains, which can be controlled via an upper and/or lower date boundary inside the

query (see FILTER statement in Figure 7), the longer the query execution takes. For large

provenance KGs it is advisable to always use date boundaries, as otherwise the query

needs to iterate over the entire data. The query in Figure 7 proved to be much more

efficient when narrowing the search space by additional filters, such as a prebound

instance. This variation allows for retrieving the change log of a single instance

efficiently. As Table 3 shows, even for an update interval comprising 1.9M triples, the

query succeeds within a few hundred milliseconds on Stardog.

The most significant functionality of the solution is the capability to recover any past

version of a KG (Feature 5), as described in Section 3.5. The dataset recovery query

(Figure 8) has provided proof to restore an entire past version of a KG from the

provenance KG within less than a minute, as the query execution times in Table 3 show.

The validation provides a first indication about the different performance of Fuseki and

Stardog. While Fuseki appears to be faster in the data population task, Stardog

significantly outperforms Fuseki in all other queries, except for the first change history

query. It must be noted that the RDF-star support of Stardog is in beta, until RDF-star

has been standardized. Further performance improvements can be expected in the future.

5. Conclusion and Outlook

This paper presents a triple-level traceability and provenance solution for KGs. It

comprises a provenance engine that intercepts SPARQL/Update queries; PROV-STAR,

an RDF-star enabled lightweight extension of the provenance ontology (PROV-O) for

representing the changes and their provenance natively with RDF-star; and a SPARQL

query transformation approach. Our validation and implementation of the solution have

shown its capability to fully trace all changes on a KG, to be scalable to large KGs by

storing only the delta, to retrieve past information and its provenance via SPARQL-star

queries, and to restore any past version of a KG by running a single SPARQL-star query.

With the generated INSERT DATA queries not requiring any queries on or updates of

existing information, the solution is highly optimized for ensuring a fast writing of the

change history on the provenance KG, live at runtime of a system. The chosen RDF-star

data representation is slim and superior to other representations and saves about 75% of

triples compared to reification as the most widely used solution so far.

The solution provides the basis for several advanced functionalities, which can be

developed on top of it. Undo, repair and merge operations can now be realized, since

with each intermediate state of the data and its provenance all required information is

available. From the available change history valuable insights could be derived, such as

comprehensive metrics and their evolution over time. Having the temporal aspect

available in the provenance KG, a multitude of questions and queries that were not

supported before can be processed and answered, such as ‘how has the factory evolved

over time?’, or ‘how has the complexity of systems changed in the past five years?’.

Furthermore, the combination of KGs with machine learning, the so-called neuro-

symbolic AI, can be lifted to a totally new dimension and complexity. Machine learning

could be applied for deriving insights and predicting coming changes from the (known)

evolution of things, for example.

References

1. Haber, S.; Stornetta, W.S.: How to time-stamp a digital document. Journal of Cryptology (3), 99–111

(1991), https://doi.org/10.1007/BF00196791

2. Simmhan, Y.L.; Plale, B.; Gannon, D.: A survey of data provenance in e-Science. ACM Sigmod Record

34(3), 31–36 (2005), https://doi.org/10.1145/1084805.1084812

3. Davidson, S.B.; Freire, J.: Provenance and scientific workflows: challenges and opportunities. In:

Proceedings of the 2008 ACM SIGMOD international conference on management of data, pp 1345–1350,

Association for Computing Machinery, New York, NY, United States (2008),

https://doi.org/10.1145/1376616.1376772

4. Moreau, L.; Growth, P.; Miles, S.; Vazquez-Salceda, J. Ibbotson, J.; Jiang, S.; Munroe, S.; Rana, O.;

Schreiber, A.; Tan, V. et al.: The provenance of electronic data. Communications of the ACM 51(4), 52–

58 (2008), https://doi.org/10.1145/1330311.1330323

5. Seneviratne, O.W.: Data Provenance and Accountability on the Web. In: Sikos, L.F.; Seneviratne, O.W.;

McGuinness, D.L. (eds) Provenance in Data Science, Advanced Information and Knowledge Processing,

Springer, Cham (2021), https://doi.org/10.1007/978-3-030-67681-0_2

6. Belhajjame, K.; B'Far, R., Cheney, J.; Coppens, S.; Cresswell, S.; Gil, Y.; Groth, P. ; Klyne, G.; Lebo,

T.; McCusker, J.; Miles, S.; Myers, J.; Sahoo, S., Tilmes, C.: PROV-DM: The PROV Data Model. W3C

recommendation (2013), https://www.w3.org/TR/prov-dm/

7. Belhajjame, K.; Cheney, J.; Corsar, D.; Garijo, D.; Soiland-Reyes, S.; Zednik, S.; Zhao, J.: PROV-O: The

PROV Ontology. W3C recommendation (2013), https://www.w3.org/TR/prov-o/

8. Chapman, A.; Sasikant, A.; Simonelli, G.; Missier, P.; Torlone, R.: The Right (Provenance) Hammer for

the Job: A Comparison of Data Provenance Instrumentation. In: Sikos, L.F.; Seneviratne, O.W.;

McGuinness, D.L. (eds) Provenance in Data Science, Advanced Information and Knowledge Processing,

Springer, Cham (2021), https://doi.org/10.1007/978-3-030-67681-0_3

9. Wang, R.Y.; Strong, D.M.: Beyond accuracy: what data quality means to data consumers. Journal of

Management Information Systems 12(4), 5–33 (1996)

10. Fensel, D.; Simsek, U.; Angele, K.; Huaman, E.; Kärle, E.; Panasiuk, O.; Toma, I.; Umbrich, J.; Wahler,

A.: Knowledge Graphs – Methodology, Tools and Selected Use Cases. Springer, Cham (2020)

11. Sikos, L.F.; Philp, D.: Provenance-Aware Knowledge Representation: A Survey of Data Models and

Contextualized Knowledge Graphs. Data Science and Engineering 5, 293–316 (2020),

https://doi.org/10.1007/s41019-020-00118-0

12. Hayes, P.; Welty, C.: Defining N-ary Relations on the Semantic Web. W3C Working Group Note (2006),

http://www.w3.org/TR/2006/NOTE-swbp-n-aryRelations-20060412/

13. Ontotext: Data history and versioning. GraphDB documentation (2023),

https://graphdb.ontotext.com/documentation/10.0/data-history-and-versioning.html

14. Eccenca GmbH: Versioning of Graph Changes. Eccenca documentation (2022),

https://documentation.eccenca.com/22.1/explore-and-author/versioning-of-graph-changes/

15. Tunnicliffe, S.; Davis, J.: Changeset – A vocabulary for describing changes to resource descriptions

(2005), https://vocab.org/changeset/schema

16. Orlandi, F.; Graux, D.; O'Sullivan, D.: Benchmarking RDF Metadata Representations: Reification,

Singleton Property and RDF. In: 15th IEEE International Conference on Semantic Computing (ICSC),

pp. 233-240, Laguna Hills, CA, USA (2021), doi: 10.1109/ICSC50631.2021.00049

17. TerminusDB: An Open Source Graph Database & Document Store (2023),

https://terminusdb.com/products/terminusdb/

18. Watkins, E.R.; Nicole, D.A.: Named Graphs as a Mechanism for Reasoning About Provenance. In: Zhou,

X.; Li, J.; Shen, H.T.; Kitsuregawa, M.; Zhang, Y. (eds) Frontiers of WWW Research and Development

- APWeb 2006, Lecture Notes in Computer Science, vol 3841. Springer, Berlin, Heidelberg (2006),

https://doi.org/10.1007/11610113_99

19. Ding, L.; Finin, T.; Peng, Y.; Da Silva, P. P.; McGuinness, D. L.: Tracking rdf graph provenance using

rdf molecules. In: Proc. of the 4th International Semantic Web Conference (Poster), pp. 42, Springer

(2005)

20. Tasnim, M.; Collarana, D.; Graux, D.; Orlandi, F.; Vidal, M.E.: Summarizing Entity Temporal Evolution

in Knowledge Graphs. In: Companion Proceedings of the 2019 World Wide Web Conference (WWW

'19), pp. 961–965, Association for Computing Machinery, New York, NY, USA,

https://doi.org/10.1145/3308560.3316521

21. Hartig, O.: Foundations of RDF⋆ and SPARQL⋆ (An Alternative Approach to Statement-Level Metadata

in RDF). In: Workshop on Foundations of Data Management, Montevideo, Uruguay (2017)

22. Hartig, O.; Champin, P. A.; Kellogg, G.; Seaborne, A.: RDF-star and SPARQL-star. W3C final

community group report (2021), https://w3c.github.io/rdf-star/cg-spec/2021-12-17.html

23. Kovacevic, F.; Ekaputra, F.J.; Miksa, T.; Rauber, A.: StarVers - Versioning and Timestamping RDF data

by means of RDF-star - An Approach based on Annotated Triples. Semantic Web 0 (2022), 1–17 (2022),

https://www.semantic-web-journal.net/content/starvers-versioning-and-timestamping-rdf-data-means-

rdf-star-approach-based-annotated

https://w3c.github.io/rdf-star/cg-spec/2021-12-17.html

Appendix

Note: This part (i.e. ontology) will be removed from the final paper and instead be

provided via a GitHub repository. This will make the paper match the given page limit

of 14 pages overall.

@prefix prov: <http://www.w3.org/ns/prov#> .

@prefix provs: <http://www.bosch.com/semantics/prov-star#> .

<http://www.bosch.com/semantics/prov-star>

 a owl:Ontology ;

 owl:imports <http://www.w3.org/ns/prov-o#> ;

 owl:versionInfo "Created by Henrik Dibowski" ;

.

provs:TripleChangeSet

 a owl:Class ;

 rdfs:comment "The set of triples changed during some graph update

 operation will be captured by the two subclasses of

 TripleChangeSet" ;

 rdfs:label "Triple Change Set" ;

 rdfs:subClassOf prov:Entity ;

.

provs:TripleGenerationSet

 a owl:Class ;

 rdfs:comment "Represents a set of triples created during some graph

 update operation. They will refer to the same TripleGenerationSet

 via statement-level annotations (RDF*)." ;

 rdfs:label "Triple Generation Set" ;

 rdfs:subClassOf provs:TripleChangeSet ;

.

provs:TripleInvalidationSet

 a owl:Class ;

 rdfs:comment "Represents a set of triples deleted during some graph

 update operation. They will refer to the same TripleInvalidation

 Set via statement-level annotations (RDF*)." ;

 rdfs:label "Triple Invalidation Set" ;

 rdfs:subClassOf provs:TripleChangeSet ;

.

provs:belongsTo

 a owl:AnnotationProperty ;

 rdfs:comment "for relating triples as quoted triples to

 TripleGenerationSet and TripleInvalidationSet instances

 (statement-level annotation using RDF*)" ;

 rdfs:label "belongs to" ;

 rdfs:range provs:TripleChangeSet ;

Figure 9. The PROV-STAR Ontology in turtle RDF syntax.

