Building an Ontology of Computational Complexity

Anton Gnatenko ${ }^{1, *}$, Oliver Kutz ${ }^{1, *}$ and Nicolas Troquard ${ }^{2, *}$
${ }^{1}$ Free University of Bozen-Bolzano
${ }^{2}$ Gran Sasso Science Institute

Abstract

The field of computational complexity theory is a core theoretical subject in computer science with significant impact also for real-world applications. Although a plethora of individual results are known, the conceptual organisation of this knowledge is still lacking. We propose the first steps towards creating an ontologically well-founded knowledge base for the theory of computational complexity that will allow storing, querying and reasoning over the vast knowledge of algorithmic problems, complexity classes and their relationships, developed by human experts. We determine the core concepts and relations of complexity theory and model them on two levels of approximation: the description logic $\mathcal{S R} \mathcal{O} \mathcal{I} \mathcal{Q}$ (a.k.a. OWL 2 DL) and first-order logic. Finally, we point out a number of phenomena that require more expressive formalisms beyond the first-order paradigm.

Keywords

Domain modelling, computational complexity, description logic

1. History and Motivation

In two papers, now amongst the seminal contributions in the history of logic and the theory of computation, Alonzo Church and Alan Turing gave negative answers to Hilbert and Ackermann's 1928 decision problem (Entscheidungsproblem): is there a general algorithm to determine whether a formula expressed in first-order logic is a theorem of first-order logic [1, 2]. To answer the question, Church and Turing first had to formally define what an algorithm is. Church developed the λ-calculus and Turing defined a special class of automata, or machines, that now bear his name. Generalising from the Entscheidungsproblem, a decision problem is a function that given an input returns 'yes' or 'no'. After Church and Turing, mathematicians had to distinguish two kinds of decision problems: those for which there is a general algorithm to determine whether it returns 'yes' or 'no' on a given input, called decidable, and those (like the theoremhood of first-order logic formulas) for which there is no such algorithm, which are now called undecidable.

Remarkably, it took nearly three decades for Hartmanis and Stearns [3] to explicitly note a peculiar aspect of decidable decision problems. Some of them appeared to necessitate "more expensive" algorithms than others. They proposed to measure the amount of time used by algorithms as a function of the size of the input. Starting from there, it became possible to study and compare algorithms and decision problems based on the computational resources they require. This is the field of computational complexity.

[^0]At the centre of research in the theory of computational complexity, or complexity theory, for short, are the complexity classes, i.e. collections of problems that feature the same inherent complexity. Throughout more than half a century of its history, the concept of computational complexity has grown refined and detailed, with many definitions depending on diverse models of computation (deterministic, nondeterministic, and probabilistic machines, alternating computations, Boolean and quantum circuits, interactive protocols, etc.) as well as different measures of complexity (time and space, circuit size and depth, the number of random coin tosses used in a computation, the number of messages exchanged between communication agents, and many more). All of this generates a vast variety of complexity classes related to each other in an intricate manner. The discoveries in the field feature both general theorems, that refer to the properties of whole families of complexity classes, as well as concrete facts about mutual connections between two classes or a class and a problem.

In a welcome statement to the Complexity Zoo^{1}, a website that attempts to collect all the known results in the field with comments and references, its creator Scott Aaronson writes: "I spent a week trying to put AM outside QMA relative to an oracle, only to learn that this followed trivially from two known results. $\langle\ldots\rangle$ Some theorists seem able to hold in their minds, in one instant, the results of every FOCS, STOC, and Complexity paper ever published. $\langle\ldots\rangle$ I am not one of those theorists. $\langle\ldots\rangle$ And so it's largely for my own benefit that I recorded a chunk of what's known in one unwieldy HTML file."

The Zoo made the life easier for many complexity theorists and many more researchers in other areas of computer science, including the authors of this article. However, it has all the standard drawbacks of old-fashioned plain-text knowledge. First, it does not contain the structural information: if the class P is a subset of the class NP, one can read it in the class description, but the very fact that $\mathrm{P} \subseteq \mathrm{NP}$ is not stored there explicitly, it cannot be searched for or used as part of a more complex query. In fact, there is no way to query the Zoo data apart from using textual search. Second, it is not protected from errors or typos: should someone accidentally write that $\mathrm{P} \nsubseteq \mathrm{NP}$, no one apart from a human user would be able to detect it and report it as a problem. Finally, even though the Zoo can provide the reader with facts and details that help to establish previously unknown relationships between complexity classes, there is no way to do this automatically by inferring new facts from given ones.

We aim at creating a semantic Complexity Zoo, a knowledge graph populated with decision problems and complexity classes, formalising their properties and relations, and equipped with an ontology that provides the semantics and allows the use of off-the-shelf reasoners for query answering, consistency checking and inference tasks. In fact, some of the phenomena of complexity theory, such as infinite hierarchies of complexity classes, actually require ontological axioms even to be described, since they can not be fully represented in the data for obvious reasons. A modest target is building a system capable of answering simple queries and making visualisations, thus facilitating the search of information for researchers and students. An ambitious goal is using it to discover previously unknown, even if simple, facts of the complexity world that follow from the existing results, but that have been overlooked so far.

This paper is the first step on this way. We discuss an approach to ontological modelling of complexity theory phenomena that is compatible with practical ontological languages and tools,

[^1]such as OWL 2 [4] and FOWL [5]. The latter is a framework for incorporating first-order axioms into an OWL 2 ontology and alternating between reasoning in a restricted OWL 2 setting or with the full power of first-order logic.

Our work uses elements of Semantic Web technologies and addresses issues of foundational ontologies and the philosophy of mathematics, similar to efforts in formalised mathematics [6]. One of the few examples of ontologies pursuing a similar goal is 'OntoMathPRO' [7], however they do not address computational complexity directly. Indeed, we are not aware of work that specifically addresses the ontological modelling challenges of computational complexity theory and with the aim of concretely modelling the existing factual data.

In contrast, many ontological investigations into mathematical objects focus on foundational issues revolving around set theory, categories, and numbers, and explore the classical philosophical dilemma asking how abstract objects can be so effective and seemingly indispensable in the systems of modern physics, see [8, 9]. Our goal here is more modest, namely to address the gap of ontologically adequate formal modelling of a particular branch of mathematics, complexity theory, so that it can be faithfully and efficiently used in practice.

In Section 2, we introduce, more formally, the notions of complexity theory and highlight the problems that arise when modelling them in an ontology. After that, in Section 3 we axiomatise the domain using a FOWL-inspired approach, that is, writing simpler axioms in OWL 2 DL and the more involved ones in first-order logic. We outline a couple of cases where the power of first-order logic is yet not enough to capture them. We wrap up the presentation in Section 4 and briefly discuss possible ways of further deepening and broadening our ontology, including extending it with a second-order layer to express more subtle details of complexity theory.

2. The Domain of Computational Complexity

The primary objects studied in complexity theory are decision problems and complexity classes. We start with the definitions. Let f be a mapping $\{0,1\}^{*} \rightarrow\{0,1\}^{*}$, i.e. a mapping of finite bit-strings to finite bit-strings. Following the tradition, we will call these bit-strings "words". An algorithm computes a function f if on any input word w it outputs $f(w)$. In this article, we will use the notion of Turing machine, which is the most common model of computation, to formalise the term "algorithm", although we plan to include other models to our ontology in the future. For an algorithm formulated as a Turing machine M, the time complexity is a mapping $T_{M}: \mathbb{N} \rightarrow \mathbb{N}$, such that on an input word of length n the machine performs at most $T_{M}(n)$ steps before halting. Space complexity, instead, gives the upper bound on the number of tape cells used by the machine on an input of length n. The machine itself may be standard deterministic, with no additional features, or allowed to use extra computational powers such as the ability to correctly "guess" some useful information (non-deterministic machines), or use randomness to facilitate its computations (probabilistic machines), etc. Apart from complexity of individual algorithms, computational problems themselves have a kind of inherent complexity, as observed by Hartmanis and Stearns [3]. The time (space) complexity of a function f is defined as the minimal time (respectively, space) complexity of an algorithm that computes it.

Traditionally, complexity theorists consider a simpler kind of bit-string functions, whose output consists of just one bit. Such a function $a:\{0,1\}^{*} \rightarrow\{0,1\}$ is called a decision problem (or
just a problem), since a can be viewed as a characteristic function of a set, and to compute a means to "decide" whether the input is in that set. We thus write $w \in a$ and $w \notin a$ if, respectively, $a(w)=1$ and $a(w)=0$. A famous example of a decision problem is SAT: given a boolean formula, decide whether it is satisfiable. Complexity classes, or just classes, for brevity, are defined as sets of decision problems. For example, P is the class of problems decidable by a deterministic Turing machine in polynomial time. Another related class, NP, contains problems decidable in polynomial time by a non-deterministic Turing machine. PSPACE is the class of problems decidable by a deterministic Turing machine using polynomial space. We invite the reader to consult Arora and Barak [10] for a detailed presentation of the domain.

2.1. Modelling the Basics of Complexity Theory

We describe the main relations, facts, and theorems of computational complexity that, in our opinion, constitute the "core knowledge" about complexity that we would like to represent in our ontology, and outline which challenges arise from it.

2.1.1. Problems, Classes, and Their Relationships

The universe of complexity theory contains entities of different types. For example, there are decision problems, and there are classes, that are sets of problems. A problem may be or may be not an element of a class, but for two classes such a question does not make sense. This difference must be preserved in the ontology and standard relations shall be axiomatised in order to respect it.

Challenge 1. Handling objects of different types.
Problems are members of classes, and classes can contain, or be subsumed by, other classes. Some set-theoretic relations between them already constitute theorems of complexity theory. For example, it is an easy consequence of the definitions that $\mathrm{SAT} \in \mathrm{NP}$ and $\mathrm{P} \subseteq \mathrm{NP}$, but it requires some effort to show PSPACE \subseteq EXPTIME, i.e. that every problem decidable in polynomial space is also decidable in exponential time. Moreover, we know that if $\mathrm{SAT} \in \mathrm{P}$ then $\mathrm{P}=\mathrm{NP}[11,12]$. On the other hand, if SAT $\notin \mathrm{P}$ then $\mathrm{P} \neq \mathrm{NP}$. These are negative statements that are nonetheless important for working in complexity theory. Therefore, set-theoretic relations are their negative counterparts should be at the basis of the ontology.

Challenge 2. Representing and reasoning about basic set-theoretic relations where both the elements and the sets are objects of the ontology.

2.1.2. Infinite Constructions

Typically, a complexity class is defined with respect to a particular computation model, particular kind of complexity (e.g. time or space) and a bound on that complexity. In this first version of our ontology we will focus on various Turing machines as the models, and time and space complexities. However, for the bounds things are more interesting. Every function $g: \mathbb{N} \rightarrow \mathbb{N}$ gives rise for classes DTime (g) (of problems decidable in time $\alpha g(n)+\beta, \alpha, \beta \in \mathbb{N}$, by a deterministic Turing machine), NTIME (g) (the same for nondeterministic Turing machines, that accept if they
are able to guess a way to the accepting state), $\operatorname{CONTimE}(g)$ (for co-nondeterministic machines, that accept if all their guesses bring them to an accepting state), and $\operatorname{ATimE}(g)$ (for alternating machines, that switch between nondeterministic and co-nondeterministic computations), as well as their counterparts for space complexity: $\operatorname{DSPACE}(g), \operatorname{NSPACE}(g), \operatorname{CODSPACE}(g)$ and $\operatorname{ASPACE}(g)$. Some of the fundamental theorems make use of this notation. For example, the time hierarchy: if $g(n)=o(h(n) \cdot \log n)$, then $\operatorname{DTimE}(n) \subsetneq \operatorname{DTimE}(h)$, or the similar space hierarchy: if $g(n)=o(h(n))$, then $\operatorname{DSPACE}(n) \subsetneq \operatorname{DSPACE}(h)$. Other examples include the famous Savitch theorem: $\operatorname{NSPACE}(g) \subseteq \operatorname{DSPACE}\left(g^{2}\right)$, or the standard inclusions DTiME $(g) \subseteq \operatorname{DSPACE}(g)$ and a bit more involved $\operatorname{DSPACE}(g) \subseteq \operatorname{DTimE}\left(2^{g}\right)$. However, most of complexity theory is built around "classes" of bounds: constant, logarithmic, polynomial, exponential, double exponential, and so on, with larger complexity classes defined as, e.g., $\mathrm{P}=\bigcup_{k \in \mathbb{N}}$ DTimE $\left(n^{k}\right)$. Therefore, we can provide a less fine-grained representation of complexity bounds and the related theory, but we will anyway need to model an infinite sequence of these "classes" of complexity bounds.

Challenge 3. Representing infinite sequences of objects and relations between these objects that depend on their positions in the sequence.

Some of the classes are defined as infinite hierarchies themselves, i.e. sequences of smaller classes each of which may be of separate theoretical and practical interest. Take, for example, the polynomial hierarchy, PH . It consists of two infinite chains of classes, $\Sigma_{0}^{p} \subseteq \Sigma_{1}^{p} \subseteq \Sigma_{2}^{p} \subseteq \ldots$ and $\Pi_{0}^{p} \subseteq \Pi_{1}^{p} \subseteq \Pi_{2}^{p} \subseteq \ldots$ Each $\Sigma_{k}^{p}\left(\Pi_{k}^{p}\right)$ is a class of problems decidable by a polynomialtime alternating Turing machine that starts in the nondeterministic mode (respectively, the co-nondeterministic mode) and performs k alternations (see Chandra and Stockmeyer [13], Stockmeyer [14] for more details). Therefore, $\Sigma_{k}^{p} \subseteq \Pi_{k+1}^{p}$ and $\Pi_{k}^{p} \subseteq \Sigma_{k+1}^{p}$. So the union of all $\left\{\Sigma_{p}^{k}\right\}_{i \geqslant 0}$ equals the union of all $\left\{\Pi_{p}^{k}\right\}_{i \geqslant 0}$, and that union is denoted by PH. This gives another challenge: we must state that if $a \in \Sigma_{k}^{p}$, then $a \in \mathrm{PH}$, and vice versa, if $a \in \mathrm{PH}$, then there exists Σ_{k}^{p} that contains a. The latter is non-trivial: this Σ_{k}^{p} must exist not just somewhere in the object universe, but in the sequence of the polynomial hierarchy. Thus, PH is defined as sort of a 'limit' of Σ_{k}^{p} with respect to \subseteq : to define it, we need to talk about the 'whole' sequence as a second-order entity, not just its separate members.

Challenge 4. Axiomatising second-order properties.

2.1.3. Relations of Higher Arity

Arguably, the notions of complexity theory that are the most famous and useful for general computer science are those of reductions and hardness. A problem a is reducible to a problem b if there is a function r, called reduction, such that for every word w we have $w \in a \Longleftrightarrow r(w) \in b$ (this definition is due to Karp [12]). An algorithm that solves b can be used to solve a, save the fact that one needs first to compute the result of applying r to the input word. Therefore, reducibility is always considered in complexity theory with respect to a certain complexity bound. Most of the standard textbook results concentrate on reductions computable by deterministic Turing machines in polynomial time or logarithmic space [10], although some other types of reductions are widely used in specific fields, such as first-order reductions in database theory [15]. A problem a is hard for a class A with respect to a particular kind of reductions, if every problem
in A is reducible to a using the reductions of that kind. A complete problem for A is such that is hard for A and itself a member of A. Complete, and, in general, hard problems play a crucial role in complexity theory, since they allow in many cases the reduction of the reasoning about classes to that of individual problems. Indeed, as we mentioned earlier, it suffices to prove or disprove SAT $\in P$ to argue that P equals (or is not equal to) NP. Reducibility and hardness are, even if it is not always highlighted, relations of arity 3: they are characterised also by the complexity of reductions they use. Moreover, they may have interesting properties, e.g. a composition of polynomial-time reductions is itself a polynomial-time reduction.

There is a more general notion of reductions between problems, called Turing reducibility (as opposed to Karp reducibility discussed above). Instead of converting an input for a to an input for b and then using the algorithm for b, Turing allows calling the algorithm for b arbitrarily many times in the process of solving a. It is usually assumed that a call to the algorithm for b can be performed within one step of computation. In this case, we say that we are solving a relative to an oracle b, as if we had an access to a powerful being that could instantly decide the problem b whenever requested. This notion gives rise to many more complexity classes: for any class A and any problem b there is a class A^{b} of problems that are decidable under the restrictions of A given the access to the oracle b. Moreover, for a class B we define $A^{B}=\bigcup_{b \in B} A^{b}$. Many results of complexity theory feature oracles, e.g. the Baker-Gill-Solovay Theorem: there are oracles a and b such that $\mathrm{P}^{a}=\mathrm{NP}^{a}$ and $\mathrm{P}^{b} \neq \mathrm{NP}^{b}[16]$. This is a theorem about relations of arity 3 .

Challenge 5. Representing relations of arity higher than 2 and theorems about them.

2.1.4. Conditional Statements

Complexity theory is rich with questions for which everyone believes in a certain answer but no one can prove it. This leads to a generous supply of theorems of the form "if α then β ", where α and β are certain statements. These theorems state a relationship between two assertions, rather than prove a particular assertion itself. For example, if $N P \subseteq$ coNP then $N P=C O N P, P=N P$ then EXPTIME $=$ NEXPTIME. If NP $\subseteq P /$ Poly then $A M=$ MA. The first statement is an easy corollary of the definitions, the second is a good example for the use of the so-called "padding argument" [10], and the latter is due to Arvind et al. [17]. Another, more involved, example of a conditional statement is that if $\mathrm{P} \neq \mathrm{NP}$ then there exists a problem in $\mathrm{NP} \backslash \mathrm{P}$ that is not NP-complete (Ladner's Theorem) [18].

Challenge 6. Representing conditional statements.

In the next section we address these challenges from the FOWL perspective.

3. Formalisation in Ontology Languages

The "real-world" ontology languages, e.g. description logics (DLs) [19] and related formalisms such as OWL 2 [4], are limited to work with binary relations, while, as we have discussed in Section 2.1.3, some of our relations are ternary. This limitation can be circumvented via techniques like reification [20,21], but only to a certain extent. Second, even the most expressive DLs, such as $\mathcal{S R O I Q}$ [22, 23], put a lot of restrictions on axiomatising binary relations. A
simple example of this is the equality relation. As a set-theoretic relation between classes, it should be in a correspondence to the subset relation, i.e. we would like to say equals \equiv subset \sqcap subset $^{-1}$, but $\mathcal{S R O} \mathcal{I} \mathcal{Q}$ does not have the construct \square to express the intersection of binary relations.

Issues of this kind have recently received considerable attention in the literature [24, 5]. Experiments suggest that formulating the forbidden axioms in first-order logic allows one to perform many inferences and query answering, using a first-order prover, in acceptable time. Specifically, the tool presented by Flügel et al. [5] allows the user to write first-order axioms as annotations in an . owl file, and then use, depending on one's needs, OWL reasoners with the part of the ontology written in OWL, or Vampire, a first-order reasoner [25], on the whole first-order ontology. With this approach at hand, we turn to writing down the axioms.

3.1. Axioms

We go through the challenges listed in Section 2, repeating them and providing (partial) solutions. We use $\mathcal{S R O \mathcal { L }}$, where possible, but retreat to first-order logic when necessary. The reader is invited to consult Rudolph [23] for a detailed definition of $\mathcal{S R O} \mathcal{I} \mathcal{Q}$.

3.1.1. Problems, Classes, and Their Relationships

Types of objects can be naturally represented by using disjoint concepts, addressing Challenge 1. For example, for problems and classes we use concepts Prob and Class:

$$
\begin{equation*}
\text { Prob } \sqcap \text { Class } \sqsubseteq \perp \tag{1}
\end{equation*}
$$

As for Challenge 2, the set-theoretic relations can be naturally viewed from a second-order perspective. To stay on the first-order and even description logic level, we simulate the secondorder relations \in and \subseteq via dedicated binary relations (or roles, as binary relations are called in description logics) 'in' and 'subset'. In fact, there is not much that we want from these roles. There are some chain constraints:

$$
\begin{equation*}
\text { in o subset } \sqsubseteq \text { in } \quad \text { subset } \circ \text { subset } \sqsubseteq \text { subset } \tag{2}
\end{equation*}
$$

And some domain and range constraints:

$$
\begin{array}{lr}
\exists \text { in } \sqsubseteq \text { Prob } & \exists(\text { in })^{-1} \sqsubseteq \text { Class } \\
\exists \text { subset } \sqsubseteq \text { Class } & \exists(\text { subset })^{-1} \sqsubseteq \text { Class } \tag{4}
\end{array}
$$

Simulating equality of classes is less easy. Indeed, we can introduce a role 'equals', but the only thing we can say in $\mathcal{S R O \mathcal { O }}$ is

$$
\begin{equation*}
\text { equals } \sqsubseteq \text { subset } \quad \text { equals } \sqsubseteq \text { subset }^{-1} \text {. } \tag{5}
\end{equation*}
$$

The "full" semantics of equality would require role conjunction, i.e. the construct subset \square subset ${ }^{-1}$, which is absent in $\mathcal{S R} \mathcal{O} \mathcal{I} \mathcal{Q}$. We thus add a first-order axiom:

$$
\begin{equation*}
\forall x, y . \text { equals }(x, y) \Longleftrightarrow \operatorname{subset}(x, y) \wedge \operatorname{subset}(y, x) \tag{6}
\end{equation*}
$$

On the first-order level, we have negation to express negative set-theoretic facts. E.g., the relation strictSubset (A, B) is disjoint with equalsand requires that B is larger than A :

$$
\begin{align*}
& \forall x, y \cdot \operatorname{strictSubset}(x, y) \Longrightarrow \neg \text { equals }(x, y) \tag{7}\\
& \forall x, y \cdot \operatorname{strictSubset}(x, y) \Longrightarrow \exists z \cdot \operatorname{in}(z, y) \wedge \operatorname{notIn}(z, x) \tag{8}
\end{align*}
$$

However, we can still say something about it with $\mathcal{S R} \mathcal{O} \mathcal{I}$:

$$
\begin{equation*}
\text { strictSubset } \subseteq \text { subset } \tag{9}
\end{equation*}
$$

3.1.2. Infinite Constructions

As we have mentioned in Section 2.1.2, every function $\mathbb{N} \rightarrow \mathbb{N}$ defines a complexity bound, but most of the theory is built around "classes" of bounds on time or space: constant, logarithmic, polynomial, exponential, double-exponential, triple-exponential, and so on, where by k-exponential bound we mean the function $\exp (n, k)$ defined as $\exp (n, 1)=2^{n}$ and $\exp (n, k+1)=2^{\exp (n, k)}$. Of course, the countable sequence of k-exponentials does not exhaust the world of complexity bounds that are present in the literature, but they are enough to represent most of the results. We come back to this question in Section 4.

We suggest to represent each "class" of complexity bounds by an individual, and subsequent bounds (such as logarithmic and polynomial, or k-exponential and $k+1$-exponential, are connected by a functional role nextBound. Moreover, since we can not explicitly list the whole sequence in the data, we need this role to create an infinite chain. This is done as follows:

$$
\begin{equation*}
\exists \geqslant 2 \text { nextBound } \sqsubseteq \perp \quad \exists \geqslant 2 \text { nextBound }{ }^{-1} \sqsubseteq \perp \quad \exists \text { nextBound }^{-1} \sqsubseteq \exists \text { nextBound } \tag{10}
\end{equation*}
$$

To create the sequence, we only need to put in the data the first object:

$$
\begin{equation*}
\exists \text { nextBound(Const) } \quad \neg \exists \text { nextBound }^{-1} \text { (Const) } \tag{11}
\end{equation*}
$$

And to access any object in the chain, say the double exponential bound, it suffices to list all the previous:

$$
\begin{equation*}
\text { nextBound(Log,Poly) } \quad \text { nextBound(Poly, Exp) } \quad \text { nextBound(Exp, 2Exp) } \tag{12}
\end{equation*}
$$

Complexity classes can now be defined as individuals "attached" to the chain of bounds via specific roles dTime, nTime, conTime, aTime, and dSpace, nSpace, conSpace, aSpace (that are all required to be functional). For example, we assert dTime(P, Poly), and, similarly, conTime(coNP, Poly), dTime(ExpTimE, Exp), dSpace(L,Log), and so on. We express the properties discussed in Section 2.1.2 via role chains. For example, deterministic classes are subsets of the respective non-deterministic classes, and a space class is always contained in the time class with an exponentially higher bound:

$$
\begin{equation*}
\text { dTime } \circ \text { nTime }^{-1} \sqsubseteq \text { subset } \quad \text { dSpace } \circ \text { nextBound } \circ \text { dTime }^{-1} \sqsubseteq \text { subset } \tag{13}
\end{equation*}
$$

The space and time hierarchies are similar:

$$
\begin{equation*}
\text { dSpace } \circ \text { nextBound } \circ \text { dSpace }{ }^{-1} \sqsubseteq \text { strictSubset } \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
\text { dTime } \circ \text { nextBound } \circ \text { dTime }{ }^{-1} \sqsubseteq \text { strictSubset } \tag{15}
\end{equation*}
$$

Savitch theorem is more complicated. In our representation, it means that the role inclusion nSpace \circ dSpace \sqsubseteq subset holds for all elements of the bounds sequence starting from Poly. To handle this, we introduce a concept name Savitch and assert that, first, it is true for Poly and, second, that it spreads along the nextBound role, thus covering the whole chain from Poly and on. To achieve the latter we use the standard DL trick with a subrole:

$$
\begin{array}{ll}
\text { Savitch(Poly) } & \text { Savitch } \sqsubseteq \exists \text { nextBound }_{\text {Savitch }} \\
\text { nextBound }_{\text {Savitch }} \sqsubseteq \text { nextBound } & \exists \text { nextBound }_{\text {Savitch }}^{-1} \sqsubseteq \text { Savitch } \tag{17}
\end{array}
$$

These axioms should be read as follows. The concept Savitch generates an outgoing role nextBound $_{\text {Savitch }}$ which implies the usual role nextBound. But since the latter is functional, as stated in (10), the fresh nextBound Savitch must go along the chain (from Poly to Exp, from Exp to 2 Exp , and so on), carrying the concept Savitch with it. In a similar fashion one can state that the presence of Savitch label on a particular bound makes the incoming nSpace role to be $\mathrm{nSpace}_{\text {Savitch }}$. And then the Savitch theorem takes the form

$$
\begin{equation*}
\text { nSpace }_{\text {Savitch }} \circ \text { dSpace }{ }^{-1} \sqsubseteq \text { subset } \tag{18}
\end{equation*}
$$

We believe that many theorems about hierarchies can be expressed using this approach. This settles Challenge 3.

Indeed, other hierarchies, such as PH, can be modelled in a similar way. We first create an infinite chain of the levels of the hierarchy, where the i th level is represented by an object ℓ_{i}, and the objects ℓ_{k} and ℓ_{k+1} are connected by the nextLevel ${ }_{P H}$ role, that is functional in both directions and has the same properties as nextBound in (10). We start the chain at the level ℓ_{0} and attach the class P to it by two parallel roles: $\operatorname{sigma}^{p}\left(\mathrm{P}, \ell_{0}\right)$ and $\mathrm{pi}^{p}\left(\mathrm{P}, \ell_{0}\right)$. For the higher levels, these two roles are used to connect to ℓ_{k} the two respective classes, Σ_{k}^{p} and Π_{k}^{p}. It is not hard to express the subset relationships between these classes in the same fashion as we did before.

There are two more tricky issues about PH. The first is that the whole hierarchy is contained in PSpACE. This is easy to say in FOL, but we can also do it in $\mathcal{S R} \mathcal{O} \mathcal{I} \mathcal{Q}$. For that we use the transitive closure of nextLevel ${ }_{\mathrm{PH}}$ to get from any level of the hierarchy back to P , and then to PSPACE:

$$
\begin{align*}
& \text { nextLevel }_{\mathrm{PH}} \sqsubseteq \text { higherLevel }_{\mathrm{PH}} \quad \text { nextLevel }_{\mathrm{PH}} \circ \text { higherLevel }_{\mathrm{PH}} \sqsubseteq \text { higherLevel }_{\mathrm{PH}} \tag{19}\\
& \operatorname{sigma}^{p} \circ \text { higherLevel }_{\mathrm{PH}}^{-1} \circ \text { sigma }^{p-1} \circ \mathrm{dTime}^{\circ} \circ \mathrm{dSpace} \tag{20}\\
& \\
& \hline 1 \\
& \text { subset }
\end{align*}
$$

Read (20) as follows: from a class Σ_{k}^{p} we step, via sigma ${ }^{p}$, to ℓ_{k}; from there we get down to ℓ_{0}, where we by sigma ${ }^{p-1}$ get to P ; and from P we get to PSPACE via dTime $\circ \mathrm{dSpace}^{-1}$, passing through Poly object in the chain of bounds.

The second issue is exactly Challenge 4: to define the class PH itself as a "limit" point of the sequence. In FOWL, we are able to give only a partial solution to this problem. Indeed, like with PSPACE above, we can say that $\Sigma_{k}^{p} \subseteq \mathrm{PH}$ for all k. However, it remains to state that PH is subsumed by the union of Σ_{k}^{p}, i.e. that if ' $\mathrm{in}(a, \mathrm{PH})$ ' is true, then there exists Σ_{k}^{p} in the chain that contains a. We leave it as a question of further development and briefly discuss it again in Section 4.

3.1.3. Relations of Higher Arity

We now settle Challenge 5 . We need first-order logic to work with relations of arity 3, such as reachability and hardness. On the other hand, most of reductions in the "textbook" complexity theory are polynomial time or logarithmic space reductions. Therefore, it makes sense to provide $\mathcal{S R O} \mathcal{I} \mathcal{Q}$ variants for these types of reductions.

We introduce roles isReducible Log and isReducible Poly , and, similarly, isHard $_{\text {Log }}$ and isHard $_{\text {Poly }}$ for hardness relations with respect to these complexity bounds. We can express their properties in $\mathcal{S R O} \mathcal{I} \mathcal{Q}$. For $F \in\{$ Log, Poly $\}$:

$$
\begin{align*}
& \text { isReducible }_{F} \circ \text { isReducible } \tag{21}\\
& F \tag{22}\\
& \text { isReducible } \tag{23}\\
& F \\
& \text { isHard }_{F} \circ \operatorname{subset}^{-1} \sqsubseteq \operatorname{isHard}_{F} \\
& \left(\text { isReducible }_{F}\right)^{-1} \circ \text { isHard }_{F} \sqsubseteq \operatorname{isHard}_{F}
\end{align*}
$$

And also:

$$
\begin{equation*}
\text { isReducible }_{\text {Log }} \sqsubseteq \text { isReducible }_{\text {Poly }} \quad \text { isHard }_{\text {Log }} \sqsubseteq \text { isHard }_{\text {Poly }} \tag{24}
\end{equation*}
$$

These roles can be connected back to their first-order originals. E.g., for logspace reducibility it is done as follows:

$$
\begin{equation*}
\forall x, y . \text { isReducible }_{\log }(x, y) \Longleftrightarrow \text { isReducible }(x, y, \log)^{2} \tag{25}
\end{equation*}
$$

A class A^{b} is defined via two objects, A and b. This can be represented by a pair of roles: base and power. For example $\mathrm{NP}=\mathrm{P}^{\mathrm{SAT}}$, therefore we write $\operatorname{base}(A, \mathrm{P})$, $\operatorname{power}(A, \mathrm{SAT})$, equals (NP, A). In this setting, stating Ladner's Theorem is done via ABox assertions using special objects that are mentioned in the theorem: Ladner's oracle l and the classes P^{l}, and NP^{l} :

$$
\begin{equation*}
\operatorname{base}\left(\mathrm{P}^{l}, \mathrm{P}\right) \quad \operatorname{power}\left(\mathrm{P}^{l}, l\right) \quad \operatorname{base}\left(\mathrm{NP}^{l}, \mathrm{NP}\right) \quad \operatorname{power}\left(\mathrm{NP}^{l}, l\right) \quad \text { notEquals }\left(\mathrm{P}^{l}, \mathrm{NP}^{l}\right) \tag{26}
\end{equation*}
$$

3.1.4. Conditional Statements

Most of the conditional statements can be treated as implications between ABox assertions, that are easy to reason about within boolean logic, as in

$$
\begin{equation*}
\text { equals }(P, N P) \Longrightarrow \text { equals(EXPTIME, NEXPTIME) } \tag{27}
\end{equation*}
$$

In cases that assert existence of an object if a certain condition is true, we can introduce such an object as a "certifier" for the result:

$$
\begin{equation*}
\neg \text { equals }(\mathrm{P}, \mathrm{NP}) \Longrightarrow \text { in }(\text { certifier }, \mathrm{NP}) \wedge \neg \operatorname{isHard}_{\text {Poly }}(\text { certifier }, \mathrm{NP}) \tag{28}
\end{equation*}
$$

This is our approach to Challenge 6.

Table 1
Summary of the modelling challenges and solutions

Challenge	Description	Success?
C1	objects of different types	yes
C2	basic set-theoretic relations	yes
C3	axiomatising infinite constructions	yes
C4	axiomatising second-order properties	partial
C5	relations of higher arity	yes
C6	conditional statements	yes

4. Discussion and Future Work

Table 1 summarises the challenges of formal modelling of complexity theory phenomena that we identified in this paper. Apart from Challenge 4, they can be successfully addressed within the FOWL paradigm. These allow us to proceed with the actual development of a working knowledge base that can be used for reasoning and query answering. Given the axioms that we have, it remains to collect and represent the factual knowledge on complexity theory in a data instance. Our first goal is to extract RDF triples from the Complexity Zoo website. For this, we plan to experiment on employing large language models, such as GPT [26], to process the text, identify entities and relationships and output RDF triples.

For a more distant future, we foresee three ways of enhancing the ontology:

- Broadening. There are many more notions and related to them phenomena of complexity theory that we are not addressing here. From diverse models of computation (such as finite automata, boolean circuits, probabilistic and quantum machines) to different approaches to define complexity classes (such as descriptive complexity) to connections with algebra and number theory: there is a lot of human knowledge on the subject to systematise in a machine-readable way.
- Deepening. As we have mentioned, our current approach focuses on the 'core knowledge' of complexity theory, i.e. the knowledge one usually acquires in an introductory undergraduate course. However, a lot of more subtle details are swept under the carpet with this approach. For example, we work only with "large" classes like P and PSPACE, and thus do not mention important facts such as $\mathrm{P} \neq \mathrm{DSPACE}(n)$. Indeed, P and PSPACE, are themselves hierarchies of classes $\operatorname{DTIME}\left(n^{k}\right)$ and $\operatorname{DSPACE}\left(n^{k}\right)$. The expressiveness of FOWL is enough to add these and other details.
- Increasing complexity. Currently, we were only able to provide a partial solution to Challenge 4. Apart from polynomial hierarchy, defining 'limits' of chains is important for other aspects of complexity theory. For example, our chain of bounds (Const, Log, Poly, Exp, 2Exp, 3Exp, ...) has, in fact, a limit, the tower function $t(n)$ defined by $t(0)=1$ and $t(n+1)=2^{t(n)}$. Functions that require time $t(n)$ to be computed are called non-elementary [27]. But this is not the end: there are Ackermann-hard computational problems [28], i.e. have time complexity higher than the tower function, and further on [29, 30]. Representing and axiomatising these phenomena would, in our opinion, require more expressive formalisms such as second-order logic.

References

[1] A. Church, A Note on the Entscheidungsproblem, J. Symb. Log. 1 (1936) 40-41. URL: https://doi.org/10.2307/2269326. doi:10.2307/2269326.
[2] A. M. Turing, On computable numbers, with an application to the Entscheidungsproblem, Proc. London Math. Soc. s2-42 (1937) 230-265. URL: https://doi.org/10.1112/plms/s2-42. 1.230. doi:10.1112/PLMS / S2-42.1.230.
[3] J. Hartmanis, R. E. Stearns, On the computational complexity of algorithms, Transactions of the American Mathematical Society (1965).
[4] B. C. Grau, I. Horrocks, B. Motik, B. Parsia, P. Patel-Schneider, U. Sattler, OWL 2: The next step for OWL, Journal of Web Semantics 6 (2008) 309-322. doi:https://doi. org/10.1016/j.websem. 2008.05 .001 , semantic Web Challenge 2006/2007.
[5] S. Flügel, M. Glauer, F. Neuhaus, J. Hastings, When one logic is not enough: Integrating firstorder annotations in OWL ontologies Preprint (2024) 1-16. doi:10.3233/SW-243440.
[6] C. Lange, Ontologies and languages for representing mathematical knowledge on the semantic web, Semantic Web 4 (2013) 119-158.
[7] A. M. Elizarov, A. V. Kirillovich, E. K. Lipachev, O. A. Nevzorova, OntoMathPRO: An Ontology of Mathematical Knowledge, Doklady Mathematics 106 (2022) 429-435. URL: https://doi.org/10.1134/S1064562422700016. doi:10.1134/S1064562422700016.
[8] H. Putnam, What is mathematical truth?, Historia Mathematica 2 (1975) 529-533.
[9] J. Landgrebe, B. Smith, Ontologies of common sense, physics and mathematics, arXiv preprint arXiv:2305.01560 (2023).
[10] S. Arora, B. Barak, Computational Complexity: A Modern Approach, Cambridge University Press, 2009.
[11] S. A. Cook, The complexity of theorem-proving procedures, in: Proceedings of the Third Annual ACM Symposium on Theory of Computing, STOC '71, Association for Computing Machinery, New York, NY, USA, 1971, p. 151-158. doi:10.1145/800157. 805047.
[12] R. M. Karp, Reducibility among Combinatorial Problems, Springer US, Boston, MA, 1972, pp. 85-103. URL: https://doi.org/10.1007/978-1-4684-2001-2_9. doi:10.1007/ 978-1-4684-2001-2_9.
[13] A. K. Chandra, L. J. Stockmeyer, Alternation, in: 17th Annual Symposium on Foundations of Computer Science (sfcs 1976), 1976, pp. 98-108. doi:10.1109/SFCS.1976.4.
[14] L. J. Stockmeyer, The polynomial-time hierarchy, Theoretical Computer Science 3 (1976) 1-22. URL: https://www.sciencedirect.com/science/article/pii/030439757690061X. doi:https://doi.org/10.1016/0304-3975(76)90061-X.
[15] L. Libkin, Elements of Finite Model Theory, Springer, 2004.
[16] T. Baker, J. Gill, R. Solovay, Relativizations of the $\mathrm{P}=$? NP question, SIAM Journal on Computing 4 (1975) 431-442.
[17] V. Arvind, J. Köbler, U. Schöning, R. Schuler, If NP has polynomial-size circuits, then MA = AM, Theoretical Computer Science 137 (1995) 279-282. doi:https://doi.org/10. 1016/0304-3975 (95) 91133-B.
[18] R. E. Ladner, On the structure of polynomial time reducibility, J. ACM 22 (1975) 155-171. doi:10.1145/321864.321877.
[19] F. Baader, I. Horrocks, C. Lutz, U. Sattler, An Introduction to Description Logic, Cambridge

University Press, 2017.
[20] D. Hernández, A. Hogan, M. Krötzsch, Reifying RDF: What works well with Wikidata? 1457 (2015) 32-47.
[21] D. Brickley, R. Guha, RDF Vocabulary Description Language 1.0: RDF Schema, 2004.
[22] I. Horrocks, O. Kutz, U. Sattler, The Even More Irresistible SROIQ, in: Proc. of the 10th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR2006), AAAI Press, 2006, pp. 57-67.
[23] S. Rudolph, Foundations of Description Logics, Springer Berlin Heidelberg, Berlin, Heidelberg, 2011, pp. 76-136. doi:10.1007/978-3-642-23032-5_2.
[24] M. Schneider, S. Rudolph, G. Sutcliffe, Modeling in OWL 2 without restrictions, in: M. Rodriguez-Muro, S. Jupp, K. Srinivas (Eds.), Proceedings of the 10th International Workshop on OWL: Experiences and Directions (OWLED 2013) co-located with 10th Extended Semantic Web Conference (ESWC 2013), Montpellier, France, May 26-27, 2013, volume 1080 of CEUR Workshop Proceedings, CEUR-WS.org, 2013.
[25] A. Riazanov, A. Voronkov, The design and implementation of VAMPIRE, AI Commun. 15 (2002) 91-110.
[26] OpenAI, GPT-4 Technical Report, 2024. arXiv:2303.08774.
[27] S. Vorobyov, A. Voronkov, Complexity of nonrecursive logic programs with complex values, in: Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, PODS '98, Association for Computing Machinery, New York, NY, USA, 1998, p. 244-253. URL: https://doi.org/10.1145/275487.275515. doi:10.1145/275487.275515.
[28] W. Czerwinski, L. Orlikowski, Reachability in vector addition systems is ackermanncomplete, in: 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), 2022, pp. 1229-1240. doi:10.1109/FOCS52979.2021.00120.
[29] H. j. Rogers, Theory of recursive functions and effective computability, Maidenhead, Berksh.: McGraw-Hill Publishing Company, Ltd. 512 p. (1967)., 1967.
[30] P. Odifreddi, Classical Recursion Theory: The Theory of Functions and Sets of Natural Numbers, ISSN, Elsevier Science, 1992. URL: https://books.google.it/books?id= ahBLqshTFMwC.

[^0]: FOUST VIII: 8th Workshop on Foundational Ontology, Twente, July 2024
 *Corresponding author.

 - agnatenko@unibz.it (A. Gnatenko); oliver.kutz@unibz.it (O. Kutz); nicolas.troquard@gssi.it (N. Troquard) (iD 0000-0003-1499-2090 (A. Gnatenko); 0000-0003-1517-7354 (O. Kutz); 0000-0002-5763-6080 (N. Troquard)

[^1]: ${ }^{1}$ https://complexityzoo.net/Complexity_Zoo_Introduction

