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Abstract
Large Language Models (LLMs) have revolutionised natural language generation. But their statistical
and auto-regressive nature makes them unreliable. It has become clear to the research community that
in order to produce reliably correct answers, LLMs need to be enriched in some way with ‘world models’
reflecting the semantics of the domains being queried. We here propose a simple workflow to address this
problem through a neuro-symbolic interaction protocol with the LLM treated as a blackbox. Answers
given by an LLM are checked against accepted knowledge provided by a domain ontology. The approach
aims to combine conflict detection with explanation extraction and formal repairs presented to the LLM
in the form of specific artificial speech acts. The goal is to build constraining, incremental prompts that
improve repeatability and veracity in the LLM’s output.
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1. Introduction

LLMs offer serious potential in knowledge discovery and information retrieval given the training
on vast corpora of text. Examples include simple lookups of basic facts, summations in the style of
Wikipedia abstracts, producing rephrasings of difficult to comprehend documents such as those
found in medical diagnosis, and so on [1]. It is therefore no surprise that some of the apparent
skills of LLMs are also being explored for complementing or assisting ontological reasoning
tasks, namely in particular learning new subsumptions and building concept taxonomies, or
populating existing ontologies with entities [2, 3].

Limitations. Despite their remarkable achievements, LLMs also exhibit a number of signifi-
cant drawbacks. Like other models of artificial neural networks, LLMs are susceptible to biases
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Figure 1: LLMs answers tend to exit the space of correct answers. A domain ontology and reasoning
can help detecting it when it occurs.

and they have limited contextual understanding [4]. But perhaps the most critical limitation
concerns their lack of accuracy, manifested by so-called hallucinations [5, 6].

Yann LeCun’s “unpopular opinion” in a recent series of talks has been that “auto-regressive
LLMs are doomed” [7]. An argument for this claim goes roughly as follows. Assume a language
model 𝑀 , and suppose that 𝑝 is the probability that any token produced by 𝑀 takes us outside
of the set of correct answers. The probability that an answer of length 𝑛 provided by the
language model 𝑀 is correct is then (1− 𝑝)𝑛, which converges to zero with the length of the
answer. Of course, with a sufficiently small value of 𝑝 (close to 0) and a ‘not too long’ answer,
the performance of such a model 𝑀 can still be very high. Figure 1 illustrates this general
situation. Our core concern thus is to study how to use ontologies and formal reasoning to steer
the LLM to remain in, or at least close to, the space of ‘correct’ answers. We first provide some
context on existing mitigation methods for hallucinations which are knowledge-based.

Some existing hallucination mitigation methods. Yin et al. [8] propose a generative
question answering system. To provide correct answers, the system is connected to a triple
store of true facts, from which it retrieves a set of candidate facts and generates an answer
to the question. Further methods exploring how to enhance machine reading comprehension
systems by incorporating external knowledge sources are presented by Bi et al. [9]. Li et al.
[10] also address the issue of semantic drift in generative question answering by incorporating
external knowledge. Martino et al. [11] use knowledge injection to counter hallucinations in
large language models. Retrieval-Augmented Generation (RAG) [12] uses expert knowledge and
domain-specific related documents to augment answers to queries, which are then processed
together by the LLM to better contextualize them.

Ji et al. [13] propose a method for mitigating LLM hallucinations via self-reflection. This ap-
proach involves three self-reflective loops: factual knowledge acquisition, knowledge-consistent
answering, and question-entailment answering. Galitsky [14] presents a fact-checking system
that exploits web mining to find correct information to suggest to the LLM. The system cap-
italises on argumentation analysis and defeasible logic programming to handle inconsistent
sources. For a comprehensive survey of existing hallucination mitigation methods, refer to [15].
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Figure 2: A generic workflow to steer language models on the path of accurate answers.

Using formal ontologies as world models. It has become clear to the research community
that to produce factual answers, LLMs need world models and common sense. Ontologies are
natural candidates for being the providers of these world models.

Ontologies are formal descriptions of the entities present within a domain of interest. They
describe the concepts, the individuals that populate them, and the relationships that hold
between them. Ontologies may contain implicit knowledge (a set of general axioms), and
explicit knowledge (a set of factual statements). The latter can be represented as rows in a
relational database, as a knowledge graph, or a Description Logic (DL) ABox. The former
must be represented as a set of logical formulas, e.g., as a DL TBox. Description Logics are
natural candidates because their reasoning problems (consistency checking, entailment, instance
checking, etc.) are usually decidable and efficient algorithms and implementations exist. Yet,
they maintain a reasonable expressivity. DLs also form the theoretical underpinning of the W3C
Web Ontology Language (OWL). See [16] for an introduction to Description Logics. Moreover,
some of the key technical elements that are required to interact and converse with an LLM are
more readily available in the DL context, as described further below. This includes non-classical
reasoning approaches for conflict detection, knowledge debugging, formal argumentation, or
knowledge weakening [17].

We thus suggest to use logical reasoning with background ontological domain knowledge to
detect inconsistent answers (Figure 1), and iteratively nudge the LLMs’ answers back on a path
of correct answers.

2. Steering LMs towards accuracy: a generic workflow

A circular workflow is depicted in Figure 2, illustrating the possible enhancement of a Language
Model’s capabilities through interfacing with ontological reasoning. This workflow iteratively
enriches the LLM’s inference abilities by fostering a symbiotic relationship between linguistic
proficiency and ontological reasoning.



We briefly discuss the key elements of our workflow:

Prompt 𝑝: The interaction begins with the user providing input in the form of text. This input
can in general range from simple queries to complex prompts, questions, or commands.
In our scenario, the prompt may be designed to:

1. ask for a succinct answer, so as to limit the issue with auto-regressive LLMs,
2. use only simple concepts and relations that have a direct counterpart in the given

ontology,
3. target certain central concepts in the specific domain of knowledge according to

subject-matter-experts.

LLM: The LLM is treated as a blackbox. The workflow does not interfere with learning and is
not intended for fine-tuning purposes.

Answer 𝑎: 𝑎 is a textual response to the prompt 𝑝 generated by the LLM. This response 𝑎
appears typically to be a coherent and relevant piece of text that addresses the user’s
prompt. Ideally this answer is short, as requested by 𝑝, so as to limit the issue with
auto-regressive LLMs.

Formulizer formul: is a computational module designed to convert English responses 𝑎 into
formal expressions formul(𝑎) represented (largely) within the signature and logical lan-
guage used in the 𝐾𝐵. This problem has been addressed by the DL research community
[18, 19]. Transforming a textual response into a given formal language can of course be
also achieved through appropriately training a network [20].

Coherence validation module: This module is aimed at evaluating aspects of consistency
and coherence of the answer 𝑎 to prompt 𝑝. Besides the answer 𝑎, it also takes as input a
domain ontology 𝐾𝐵 related to the topic of the prompt, here expected to be written in
DL and using certain known concepts, roles, and individuals.

We assume here that the outcome 𝑎 is in a form that makes it amenable to semantic
analysis in order to generate a formal response, as follows:

1. LLM outcome: The generated text by the LLM, 𝑎, follows a structure and vocabu-
lary that allows one to extract a formalised version formul(𝑎) written in the same
language as 𝐾𝐵.

2. Semantic analysis: 𝐾𝐵∪{formul(𝑎)} is evaluated for semantic defects which include
inconsistency but also weaker notions such as ‘off topic’ or ‘incoherent’.

3. Coherence evaluation: The module may provide a coherence score (or other quanti-
tative evaluation metrics) indicating the degree of alignment or agreement between
the LLM outcome, domain ontology, and other constraints. Such metrics should
helps assess the quality and reliability of the generated text and help steer the
feedback. Scores for coherence were for instance proposed in [21].

4. Feedback 𝑖𝑛𝑐 about incoherence: If incoherences are detected, the module may
provide feedback 𝑖𝑛𝑐 highlighting the areas where the LLM outcome diverges from
the ontology or violates logical rules. This feedback can be used to refine the
generated text or improve the LLM’s understanding of the domain.



Verbalizer verbal: The use of verbalisation techniques for translating symbolic facts, ontolog-
ical rules and logic entailments into natural language is a core aspect of the workflow.
Verbalisations are readily available for the DL framework; in the simplest form, Manch-
ester Syntax can be almost directly translated to regular English [22].

Prompt adaptation 𝑝 = makeprompt(𝑖𝑛𝑐): We create a speech act generated from the seman-
tic analysis. This can be a verbalisation of an explanation of a proof, an announcement
that certain facts need to be accepted, or that other facts need to be rejected.

Extracting formal explanation is arguably a challenge of its own [23, 24]. Fortunately,
we are not interested in post hoc explanation of the response of the LLM, but in logical
derivations of the found inconsistency. Some simple forms of ‘explanation’ can be con-
sidered, like the extraction of a minimal inconsistent set, for which there are efficient
methods (e.g., [25]). Thus, in the workflow, 𝑖𝑛𝑐 could be for example a minimal incon-
sistent set of 𝐾𝐵 ∪ {formul(𝑎)}, and the new prompt 𝑝 = makeprompt(𝑖𝑛𝑐) could be
“But verbal(¬𝑖𝑛𝑐)!". To help the LLM further, we might want to suggest a repair of the
inconsistency, and perhaps some weakened assumptions of claims the LLM had made,
using e.g. the repair and weakening techniques of [17].

3. Possible limitations

Our approach itself certainly has some limitations. Some of those possible limitations concern
assumptions we are making about the future (capabilities) of LLMs themselves.

• Our workflow involves some sort of (automated) “arguing” with the LLM. We started this
note by reporting about the lack of accuracy of LLMs. And yet, we must rely on some
accuracy, or at least logical consistency. Indeed, for our workflow to work as expected,
the LLM would need to have a basic ‘understanding’ of logic. (E.g., the updated prompt
attempting to point out a contradiction to the LLM: “But, verbal(¬𝑖𝑛𝑐)!”) Unfortunately,
current LLMs are deficient in this regard. [26, 27] and perform especially poorly in the
presence of negations [28]. The logical understanding they have is limited to statistical
patterns in language rather than true logical comprehension. However, improving exactly
this skill is a core research problem in the field [29].

• Abstraction (and, thus, logic) is still very difficult to handle by LLMs, as is clear also
from studying their mathematics capabilities [27] but also when describing verbally the
description of an object using variables. To illustrate this, Fig 3a shows the result of a
text-to-image generation where the text prompt is a verbalisation of a formalisation of
the concept ‘fishvehicle’ as created by a symbolic blending algorithm and using phrases
such as ‘the object 𝑥 should be such that [. . . ]’. In contrast, Fig 3b shows the direct
text-to-image production using ‘a fish that is also a vehicle’, relying directly on the bias
of the model what a ‘fish’ respectively a ‘vehicle’ look like. Both artefacts were produced
with SDXL-Lightning1.

1See https://huggingface.co/spaces/ByteDance/SDXL-Lightning.

https://huggingface.co/spaces/ByteDance/SDXL-Lightning


(a) A symbolic representation of a ‘fishvehicle’
produced by the blending algorithm of [33],
verbalised and fed back into a text-to-image
generation algorithm.

(b) A textual representation of a ‘fishvehicle’,
namely described as ‘a fish that is also a
vehicle’, fed directly into a text-to-image
generation algorithm.

• LeCun [7] recommends to abandon auto-regressive LLMs for text generation altogether.
Our approach does not act upon this recommendation. Instead it tries (maybe naively) to
put back text generation on the path of truth.

To summarise, to be put in practice, one needs the following elements:

• A domain ontology in a signature 𝑆𝐷 for every domain 𝐷 that is addressed in prompt 𝑝.
• A reasoner for the specific Description Logic (or corresponding OWL profile) in which

the domain ontology is written. Fortunately, consistency checking is a standard reasoning
task, and efficient reasoners exist for DLs (e.g., Hermit, Fact++, Pellet), but also to some
extent for First Order Logic (e.g., Vampire, Z3).

• A verbalizer verbal, to transform a set of logical formulas in Description Logic over
the signature 𝑆𝐷 into natural language. Some readily available technologies have been
proposed for controlled natural languages. Examples are the OWL-Verbalizer [30] for
Attempto Controlled English (ACE),2 or the mapping proposed by Cregan et al. [31]
between the Sydney OWL Syntax and OWL 1.1 functional syntax. The NaturalOWL
System [32] is specifically aimed for generating coherent multi-sentence translations of
OWL axioms.

• A formulizer formul, to transform English text of the domain 𝐷 in a logical representation,
in Description Logic, over the signature 𝑆𝐷 . If we can assume that the answer provided
by the LLM is in controlled English, then the verbalizer, like Kaljurand’s OWL-Verbalizer
is reversible, meaning that it can convert ACE English back into (ACE) OWL.

4. Outlook

We are interested in addressing the challenge of making LLMs more reliable by leveraging
the strengths of ontologies and automated reasoning. To this end we proposed a high-level
architecture to interact with an LLM through a conversational pipeline involving artificial
speech acts including feedback from symbolic components. Currently we are investigating
a number of concrete examples and instantiations of the architecture in order to assess its
potential.
2See also https://www.w3.org/2001/sw/wiki/ACE.

https://www.w3.org/2001/sw/wiki/ACE
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