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Abstract
In response to the escalating limitations of traditional electronic computing, the potential of nanopho-
tonic calculators, which utilize light instead of electricity to enhance computing performance, appears
promising. Nonetheless, the development of nanophotonic calculators presents significant challenges
for physicists, primarily due to the complexity of design and the absence of established guidance to
optimize the operation conditions from a vast parameter landscape, as well as the need for a collaborative
framework to manage knowledge and support decision-making. This paper introduces an innovative
approach that combines cognitive psychology and ontological formalization to capture and structure
expert knowledge and domain-specific constraints. This interdisciplinary strategy enables the formaliza-
tion of knowledge into structured, machine-readable ontologies, optimizing simulation and fabrication
processes for nanophotonic calculators. By integrating expert insights with artificial reasoning, our
approach aims to improve the efficiency and reliability of simulations, thereby reducing the time and
cost associated with experimental methods. The developed ontology has been successfully applied in
multiple simulation scenarios, demonstrating its effectiveness in guiding the development of all-optical
nanophotonic devices.
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1. Introduction

The demand for faster and more efficient computing systems has driven technological advance-
ments in recent decades. Traditional electronic computing devices, which rely on silicon-based
transistors, have experienced remarkable progress in speed and miniaturization [1]. However,
as the limitations of these devices become increasingly apparent [2, 3], the quest for alternative
computing paradigms has intensified. A promising direction lies within the field of nanopho-
tonics, where light is used instead of electricity to transmit and process information [4]. By
exploiting the natural properties of photons, such as their high-speed transmission and low
energy consumption, nanophotonics can transform computing architectures and propel us into
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a new era of computing capabilities. Therefore, developing nanophotonic calculators offers a
potent alternative to traditional electronic processors.

Conventional devices operate within the confines of electrical circuits and semiconductor
materials and obey the laws of solid-state physics applied to electrons in materials. In contrast,
the development of nanophotonic calculators must adhere to the constraints and fundamental
laws of optics and light propagation. Thus, research into nanophotonic calculators requires
technical expertise and a profound understanding of light-matter interaction principles. This
poses a significant challenge for physicists and engineers in this field, mainly because this under-
standing often relies on experimental results and evolving expertise. Depending on the operator
to be developed, physicists must determine the optimal structure and excitation parameters to
fabricate the nanophotonic calculator. In addition to the constraints of physics, the solution
must consider additional parameters such as material properties, simulation environment, and
fabrication constraints according to technical limitations and available fabrication processes.

The first successful experimental results were obtained using a double hexagonal structure
(DH) for a set of logic gates [5, 6]. However, the discovery of more complex calculator config-
urations may be limited by the choice of structure and simulation parameters, often defined
from intuitive assumptions of domain experts, through experimental and/or numerical tests,
which can be time-consuming and costly. To address this issue, we propose employing artificial
reasoning to verify the validity of optical simulation parameters before proceeding to real
experimentation. This approach aims to enhance efficiency by using computational models to
systematically evaluate shapes and excitation parameters, thereby eliminating configurations
that do not adhere to expert knowledge and domain constraints. This strategy not only reduces
the time and cost associated with experimentation but also facilitates the exploration of more
complex calculator configurations beyond those previously considered feasible.

To do that, collecting, comprehending, and formalizing the expert knowledge and the domain
constraints is essential. In this paper, we propose an innovative approach that combines cogni-
tive psychology techniques inspired by work psychology [7, 8] and ontological formalization,
commonly used in artificial intelligence [9]. Our approach aims to collect and structure expert
knowledge and domain-specific constraints using knowledge elicitation techniques and formal-
ize it into a shared and formal model using ontology engineering to facilitate the reasoning
process.

Integrating perspectives from cognitive psychology into our approach enhances the acquisi-
tion and comprehension of experts’ knowledge and domain constraints. Employing ontology
modeling and reasoning allows for the formalization of collected knowledge in a well-defined
and structured manner that is machine-readable. The objective is twofold: first, to describe
and consolidate nanophotonic knowledge and constraints into a unified and formal model,
and second, to mitigate fabrication errors by ensuring the validity of simulation parameters
according to defined constraints. This approach enables experts to easily explore solutions in-
volving new shapes and excitation parameters, while providing the validity of optical simulation
before advancing to real experimentation. This synergistic combination leverages both human
expertise and machine reasoning capabilities, resulting in a robust framework for knowledge
management and decision support in the development of nanophotonic calculators.



2. From Cognitive Knowledge Elicitation to Ontology
Engineering

Developing a reasoning model requires the acquisition of explicit and tacit knowledge from
experts who have a deep understanding of domain constraints. Explicit knowledge refers to
information readily articulated by individuals, whereas tacit knowledge involves expertise
gained through experience, which might be complex to verbalize. These two knowledge forms
are crucial to creating a formal model with a deep understanding of the domain, thus ensuring
that the reasoning process aligns with the limitations and constraints of the real world.

Knowledge acquisition is an essential step in the development of knowledge-based reasoning
systems. However, in practice, collecting expert knowledge is a complex social interaction
process that faces several difficulties impacting the quality and the completeness of the resulting
model [10]. To avoid comprehension errors and omission of necessary knowledge, it is essential
to employ adapted elicitation techniques to ensure the reliability, accuracy, and relevance of
the collected knowledge and then facilitate the formalization process. To do that, we propose a
collaborative approach that integrates expertise from cognitive psychology with ontological
engineering to facilitate the transition from expert knowledge to a formal model.

Figure 1 illustrates the main phases of our methodology, which combines cognitive knowledge
elicitation with ontology engineering. The initial step concerns knowledge acquisition using a
cognitive knowledge elicitation technique developed in collaboration with researchers in human
and social sciences [11]. Rooted in the psychology of work and development domains, this
technique integrates conversational, observational, and analytical methods of elicitation [12].
It is designed to be flexible, allowing for adaptation to the specific needs of the application
domain and the constraints inherent in reasoning processes. A cognitive analyst possessing

Figure 1: Combining Cognitive Knowledge Elicitation and Ontology Engineering.

the necessary skills to conduct and facilitate knowledge acquisition sessions with domain
experts performs the knowledge acquisition process. This phase focuses on understanding and
capturing experts’ explicit and tacit knowledge and the domain’s constraints.



After the acquisition phase, the collected knowledge will be organized and structured into a
semi-formal model using mind maps and UML diagrams [11]. At this stage, domain concepts
with their properties and relationships are defined, allowing the development of a preliminary
model of structured knowledge. This initial model serves as an intermediary result of the pro-
cess, presenting the collected information in an organized manner and preparing it for further
refinement. During this phase, the combined efforts of cognitive analysts, ontological engineers,
and domain experts are essential to ensure a precise interpretation of knowledge and the devel-
opment of coherent models aligned with expert descriptions. Through iterative discussions and
feedback loops, this collaborative approach facilitates a deeper understanding of the knowledge.
It also aids in identifying inconsistencies and gaps in knowledge, potentially prompting revisions
in the acquisition phase to enhance the model’s accuracy and comprehensiveness.

The final phase involves transforming structured knowledge into a formal representation,
such as an ontology, for reasoning purposes and the development of artificial intelligence
solutions. During this phase, the formalized knowledge model is collaboratively tested and
refined with domain experts to ensure that the formal model is aligned with both the expert
knowledge and the domain’s specific descriptions and constraints. It is an iterative process in
which feedback and adjustments are consistently integrated to refine the model and enhance
the accuracy and precision of the reasoning system according to domain-specific knowledge.

3. Application for the design and simulation of a nanophotonic
calculator

The conception of a holistic nanophotonic calculator, i.e. that performs the calculation in itself
rather than as part of a cascaded network of devices, requires the determination of the specific
shape of the device and excitation parameters, including the laser position, polarization, and
phase, according to the intended logic gates. These parameters are defined by domain experts
who thoroughly understand the constraints imposed by physical laws, practical conditions, and
limitations of fabrication processes, optical drive, and read-out. Thus, a deep understanding of
both theoretical aspects of the field and practical production and operation challenges is crucial
for the formalization process. This ensures that the developed reasoning model conforms to the
domain’s constraints and aligns with the objectives defined by the physics experts.

A knowledge acquisition process is necessary to identify the expert knowledge and domain
constraints that must be formalized for nanophotonic calculators. This process aims to extract
domain-specific terminology, systematically defining concepts and their interrelations. Per-
formed in collaboration with cognitive analysts, this process uses our approach’s cooperative
knowledge elicitation technique to ensure a thorough understanding of the domain [11].

After the acquisition process, the collected expert knowledge and domain constraints are
structured and modeled using a UML (Unified Modeling Language) class diagram [13]. This
graphical and standardized representation, known for its clarity and ease of understanding, is an
essential tool for validating the accuracy and completeness of the captured knowledge. Figure 2
presents a simplified overview of the UML model related to the simulation of a nanophotonic
calculator. This class diagram visually outlines the domain concepts, their properties, and their
interrelations, fostering a shared understanding among physics experts and computer engineers.



It guarantees that the modeled knowledge aligns with the insights of the physics experts and
accurately reflects the predefined domain constraints. This step is essential to ensure that the
foundational knowledge for the nanophotonic calculator is correctly interpreted, laying a solid
basis for the subsequent formalization process.

Figure 2: Simplified view of the UML model related to the studied nanophotonic calculator application.

The validated UML model is then used in the formalization process, during which a formal
model is constructed as an ontology for reasoning purposes. In this phase, concepts represent
classes, while attributes and relationships transform into data and object properties. Complex
constraints are formalized using the SWRL rules (Semantic Web Rule Language)1, which are
used during the reasoning process. The resulting ontology is rigorously tested across diverse
use cases and validated by physics experts to confirm its robustness and practical applicability.
The reasoning process is used not just to infer new knowledge, but also to explain the reasons
behind the invalidity or infeasibility of a simulation. To do that, the ontology incorporates
concepts and parameters relevant to the validity of each parameter during the experimentation
phase. For instance, an optical simulation is considered valid if its specified shape and excitation
parameters adhere to constraints set by experts, such as the permissible minimum or maximum
size of a segment within the defined polygonal shape or the minimal distance between two
excitation points for the laser beam. This method guarantees that simulations are theoretically
verifiable, aiding experts in selecting suitable parameters in alignment with the physical law
and fabrication constraints.

Figure 3 describes a simplified view of the developed ontology. The complete version is
available via this link2. This ontology formalizes the knowledge collected to model an optical
simulation, as well as the information needed to generate a numerical simulation of the laser
field using the PyGDM tool3 [14]. The developed ontology provides a formal way to describe the
1https://www.w3.org/submissions/SWRL/
2https://ontology.dalhai.webapp.ciad-lab.fr/
3https://homepages.laas.fr/pwiecha/pygdm_doc/
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parameters of each optical simulation. It encompasses the geometry of the polygonal shape in
terms of line segments and their point coordinates, the parameters for laser excitation, the input
excitation points, and the output parameters necessary for defining the aimed logical gates.
Each concept within the ontology is enriched with a set of data properties, object properties,
and SWRL rules describing collected knowledge and domain constraints. This ontology can be
populated with data related to a given simulation, and an inference engine is used to verify the
coherence and validity of this simulation.

Figure 3: Simplified view of the ontology related to the studied nanophotonic calculator application.

We have conducted various optical simulation tests on different shapes and parameters
to validate our approach and the ontology developed. These simulation tests are provided
by either expert physicists or automatically generated by a machine learning algorithm. For
each simulation, the ontology is automatically populated with data related to the description
of a shape and its excitation parameters. This includes a detailed set of segments and their
coordinate, input excitation points, laser beam characteristics, etc.

A reasoning process will then be applied to the populated ontology to ensure the validity
of the optical simulation regarding the physical and real fabrication constraints defined in the
ontology. Expert physicists will use the result of the reasoning process to validate the simulation
or adjust its parameters before advancing to the fabrication and optical experimentation stages.
To simplify the interpretation of the reasoning results, we introduced a Boolean data property for
each concept, indicating the validity of each related element in the simulation. As shown by the
example presented in figure 4, the value of this data property is inferred by the reasoner based
on the ontology’s stored knowledge and predefined rules. This enables experts to easily identify
elements that do not meet the specified constraints, facilitating adjustments or corrections to
enhance the reliability of the simulation. This approach improves the precision of experiments
and ensures that the transition from theoretical models to practical applications is efficient and
effective.

4. Conclusion and Future Work

This paper presents a methodological approach to transforming expert knowledge into ontolo-
gies and illustrates its application through the simulation of nanophotonic calculators. Our



Figure 4: Example of reasoning process: In this example, the optical simulation is not valid because the
reasoning process identified that the shape used for the simulation is not valid. The shape contains a
segment whose length, calculated according to a rule defined in the ontology, is less than the minimum
segment length defined by the domain expert.

approach integrates techniques from cognitive sciences to ensure a comprehensive capture and
deep understanding of domain-specific expertise, thus enabling the transformation of informal
expert knowledge into a formalized, structured ontology. This method highlights the critical
role of expert insights for precise ontological development and showcases the synergy between
cognitive science methodologies and ontological formalization. Such an integration enhances
the creation and application of reasoning systems, improving their applicability and reliability
in the addressing of complex challenges. Transitioning from a nuanced understanding of human
experts to a formalized ontological model, our approach offers a streamlined path for developing
cognitive-informed artificial reasoning systems.

We have applied this methodology to formalize expert knowledge in the context of simulating
nanophotonic calculators. Based on cognitive knowledge elicitation, the developed ontology
has been tested across multiple simulation scenarios, demonstrating its effectiveness in aiding
physicists to select simulations for fabrication and experimental validation. This harmonization
of human expertise with formal modeling demonstrates the importance of interdisciplinary
collaboration and the advantages of integrating cognitive sciences with artificial intelligence.
It illustrates how a deep understanding of human cognition and expert knowledge can be
effectively converted into computational and former models, facilitating the development of
more precise and reliable artificial reasoning systems.

For future work, we aim to integrate the developed ontology with a machine learning
algorithm automatically. This integration will enable us to evaluate a vast array of machine
learning simulations while also using ontological knowledge to guide and refine the learning
process. This future direction seeks to enhance the precision and efficacy of simulations, thereby
advancing the development of nanophotonic calculators.
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