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Sweden
eDepartment of Computer Science KU Leuven, Leuven, Belgium

Abstract. Situationally-aware artificial agents operating with compe-

tence in natural environments face several challenges: spatial awareness,
object affordance detection, dynamic changes and unpredictability. A
critical challenge is the agent’s ability to identify and monitor envi-

ronmental elements pertinent to its objectives. Our research introduces
a neurosymbolic modular architecture for reactive robotics. Our sys-
tem combines a neural component performing object recognition over

the environment and image processing techniques such as optical flow,
with symbolic representation and reasoning. The reasoning system is
grounded in the embodied cognition paradigm, via integrating image

schematic knowledge in an ontological structure. The ontology is oper-
atively used to create queries for the perception system, decide on ac-
tions, and infer entities’ capabilities derived from perceptual data. The
combination of reasoning and image processing allows the agent to fo-

cus its perception for normal operation as well as discover new concepts

for parts of objects involved in particular interactions. The discovered
concepts allow the robot to autonomously acquire training data and ad-

just its subsymbolic perception to recognize the parts, as well as making
planning for more complex tasks feasible by focusing search on those rel-
evant object parts. We demonstrate our approach in a simulated world,

in which an agent learns to recognize parts of objects involved in sup-

port relations. While the agent has no concept of handle initially, by
observing examples of supported objects hanging from a hook it learns
to recognize the parts involved in establishing support and becomes able
to plan the establishment/destruction of the support relation. This un-
derscores the agent’s capability to expand its knowledge through obser-

vation in a systematic way, and illustrates the potential of combining
deep reasoning with reactive robotics in dynamic settings.
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1. Introduction

A complex tapestry of latent knowledge underpins every interaction between an
agent and its environment. Aspect such as affordances, agent’s own capabilities,
and nuanced properties of the environment form the bedrock upon which cogni-
tive agents perceive, interpret, and navigate their surroundings. The depth of this
interaction is not merely a function of the agent’s immediate sensory input but is
influenced by a pre-existing, albeit latent, framework of knowledge. This frame-
work includes stored interaction patterns and hard-wired relations that dictate
the agent’s engagement with its environment, guided by the rules that govern the
world in which the agent is operating.

Despite impressive advancements in generative AI “foundational models,” a
significant gap remains in their understanding and representation of physical and
spatial dynamics. Most recent OpenAI release, SORA1, is a Language and Vision
Model to generate video from text prompts. While the generated contents at this
time are very good looking, they also showcase limitations such as a poor grasp
of object permanence – entities may flick in and out of existence in implausible
ways – and elementary physics laws [1].

Endorser of the “more data is all you need” claim that such errors will even-
tually be fixed, and this is not, a-priori, a vain hope: even large neural networks
have to “compress” its training data, and in so doing, they will stumble upon reg-
ularities of the world. We are reluctant to endorse this view however. Generative
AI models, while groundbreaking in generating coherent and contextually rele-
vant linguistic or visual outputs, primarily operate on the basis of the statistical
probability of sentence or image completion, with statistics obtained from a cor-
pus of decontextualized recordings. This approach has a fundamental limitation:
the lack of embodied grounding, informed by real-world sensorial data, obtained
and interpreted by an agent in purposeful engagement with that world.

More than ever, SORA’s impressive results raise questions like: what is that
world knowledge we need, how could it be described, how would it be used in an
autonomous agent interacting with some kind of world?

Furthermore, SORA and LLM’s lack of embodied grounded knowledge is an
echo of Moravec’s paradox [2]: the observation that human intuitions for what is
cognitively easy do not translate to machines. The problem of endowing practical
know-how to artificial agents is of chief relevance in autonomous robotics, and it
is from this perspective – that of artificial agents – that we approach the problem.
Thus, though our system is cognitively inspired, we do not endeavour to obtain
cognitive plausibility.

With the purpose to display how cognitive robotics, and in particular a neuro-
symbolic architecture, is capable to perform commonsense reasoning on the world
thanks to embodied cognition knowledge, our exploration in this work is driven
by the following questions: which objects exist, where to place attention, and how
may an agent enrich its knowledge, at different levels of abstraction, about the
entities in the world and their interactions.

1SORA’s technical report is available here:
https://openai.com/research/video-generation-models-as-world-simulators

https://openai.com/research/video-generation-models-as-world-simulators


Our contribution is threefold: (i) we represent, in a formal way, a semantic
parsing of sensorimotor events that a cognitive system undergoes as it observes
and interacts with an environment. This event segmentation is grounded in the
paradigm of embodied cognition, specifically the notion of Image Schemas, as
detailed in Section 2.

Second (ii), we propose the development of a modular reasoning system to
identify specific situations, the entities involved, and the roles they play. This
system is designed to operate at the intersection of neuro-symbolic processing,
leveraging the continuous stream of perceptual data obtained from a neural ar-
chitecture. The fusion of neural inputs with symbolic, ontology-based reasoning
allows for the transformation of raw sensory signals into structured, actionable
knowledge. This integration enables to dynamically update the system’s internal
knowledge to new information and environmental changes.

Lastly, (iii) we investigate how the combination of neural network-based ob-
ject recognition and reasoning can enlarge an artificial agents ontology. Our agent
starts with a certain knowledge base: it knows a set of objects, understood as fi-
nite shapes. However, it can teach itself to recognize parts of these objects if those
parts are involved in functional relationships, i.e. relationships between objects
that constrain how a scene will unfold.

Thus, we introduce a “sense-making” system, dedicated to the identification
and understanding of mereological affordances within the environment. This sys-
tem, through the repeated observation of spatio-relational patterns, is adept at
recognizing areas of interest that exhibit new emergent properties. These proper-
ties are not static but evolve based on the functional parts of the environment,
thereby presenting a continuously shifting landscape of interaction possibilities.

Finally, from an ontological point of view, our work relies on the Description
& Situation (DnS) pattern [3,4], based on the reification of intensional/extensional
relations with recursive accessibility.

2. Related Work: Conceptual Modeling, Embodied Grounding, and Cognitive
Robotics

In this section we will briefly review some conceptual tools and existing approaches
we use to build our system. We start with a summary on image schemas and
their hypothesized roles in human cognition, continue with frame semantics as
employed to understand descriptions of world states, and end with a discussion on
how image schemas have been previously formalized. Finally we provide references
to previous approaches in robotics relying on cognitive paradigms.

Image Schemas To have an understanding of the space of possibilities for an
artificial agent, it helps to look at what humans seem to do. The learning pro-
cess in children, known as perceptual meaning analysis (PMA) [5], involves de-
riving generalized spatiotemporal patterns, called image schemas [6], from such
interactions. Image schemas represent a finite set of relationships among objects,
agents, and their environments that define their uses and the spaces of their af-
fordances. Examples are Containment, meaning one object can be/is contained



inside another one and Source Path Goal, meaning objects can/do move along
particular trajectories.

Image schemas are considered the foundation for reasoning [7], and were
shown to evolve into cognitive functions such as natural language and conceptu-
alizations of abstract entities [6,8] through grounded, experiential patterns. Fur-
thermore, image schemas can combine in more complex structures. Take for in-
stance the notion of “transportation”. It does not rely on any object in particular,
but can be generally understood as the “movement of object(s) from A to B”. In
image-schematic terms, it can be described as a combination of Source Path
Goal and Support or Containment [9]. By combining these concepts in con-
stellations and sequences (as state spaces) [10,11], it is possible to formally de-
scribe the structure of increasingly complex events.

Frame Semantics and Its Ontological Modelling For the conceptual mod-
eling we rely on the Frame Semantics cognitive paradigm and reuse the notion
of “frame”, as in Minsky and Fillmore [12,13]. Frames are schematic abstract
representations of recurrent situations. Each frame takes a set of semantic roles,
namely the elements which participates to the frame situation. The minimum set
of roles to realise a frame composes the “necessary roles”. Frames are formalised
as N-ary relations with a central node being the Event/Situation, and a number
N of semantic roles participating to it. Note that the set of possible roles is much
broader than the one of its necessary roles.

From an ontological modeling perspective, employing frames for representa-
tions adheres to good modeling practices through the adoption of the Description
and Situation [3] Ontology Design Pattern. In this framework, each image schema
discussed in our study is conceptualized as a semantic frame, represented as a
Description that is satisfied by a Situation. In more detail, the Situation reflects
a specific world state, encapsulating the essential roles required for its realiza-
tion. If the Situation presents the necessary roles as formalized by a particular
Description, then the Situation satisfies the Description. DnS as a formalization
of Frame Semantics has been largely used in various projects (mainly in its OWL
formalization) [14,15,16,17].

Image Schema Ontological Modeling Formally representing image schemas
is a complex problem as they are conceived and treated as abstract “gestaltic
entities” [6] without clear borders or structure. However, traditional methods
in spatiotemporal reasoning have been proposed as representation approaches
(e.g. [9]) and some of these logical languages and calculi, in particular Region
Connection Calculus [18], Qualitative Trajectory Calculus [19] and Linear Tem-
poral Logic [20] were combined into the modelling language the Image Schema
Logic, ISLFOL [21,22]. Being a description language in first-order logic, ISLFOL

can capture detailed spatiotemporal interactions and transformations that can be
used to represent situations or events.

Complex events can be seen as compositions and co-occurrences of more el-
ementary situations or ‘scenes’, which in turn can be represented using image-
schematic representations [10]. In this way, it is possible to decompose events
and even robotic action plans based on the sensorimotor input about a situation,
exploiting flowing data from a perception module (see examples in [11,10,23,24]).



However, for most autonomous systems, this level of spatiotemporal mod-
elling is too detailed to be used for actual real time situation analysis and decision
making tasks. Therefore, the fundamental image-schematic representations have
been proposed by transposing the methods into different types of description log-
ics, e.g. EL++ [23] and OWL22 [25]). In [26], we introduced the image-schematic
reasoning layer (ISRL) which is based on ISL2OWL, a simple ontological module
of image-schematic components.

In ISL2OWL, acting as an ontological module, each image schema is modeled
as a semantic frame. More precisely as an N-ary relation with central node the
image schematic situation, where the spatial primitives forms the necessary roles.
For example, a Support situation takes as necessary roles two elements: a Sup-
porter, and a Supported entity. The underlying theoretical assumption is de-
rived from image schematic literature, and directly dependent on the Gestalt [27],
frame-based nature of image-schemas [28]: if one of its roles (spatial primitives) is
instantiated, this implies the activation of the whole image schema. This means
that knowing there is a supporting entity also means knowing there is a supported
one, and situation is a Support situation.

Therefore, given a certain state of the world, if a certain entity is retrieved
as being in movement, that particular state of the world will be represented as
a Movement situation, taking as participant the moving entity as Mover. The
same situation could, of course, be qualified by more than one image schematic
relation, in a combinatorial increasing degree of complexity.

Furthermore, following [10], there are three possible image schematic combi-
nations: Merge, Collection, and Structure. Thanks to the frame approach, more
complex scenarios can be modeled as N-ary relations taking as roles more sim-
ple situations, for example, a Transportation situation results from the co-
occurrence of a Movement situation co-located with a Support situation by
being axiomatised as taking as roles some Movement and Support. Thanks to
the reasoning system described in the following, a Movement situation S1 hav-
ing as participants x and y, and a Support situation S2, taking as participants
the same x and y, is inferred as Transportation situation.

While a lot of information is abstracted away from the original ISLFOL, repre-
senting the image schemas in a computationally feasible way in ISL2OWL allows
for them to be used in logical reasoners and as a consequence, we can represent
them as semantic building components for the task descriptors.

Cognitive Robotics Allowing a robot to display an intelligent behaviour is the
main goal of the field of cognitive robotics. It involves studying the knowledge
representation and reasoning problems a robot faces in a dynamic and partially
observable world [29]. In addition to representing knowledge and reasoning, cog-
nitive robotics studies methods of learning through interaction with the environ-
ment [30,31].

For a cognitive robot to function in the dynamic and uncertain environment
that the real world is, three main components are required: i) a source of knowl-
edge regarding the environment, ii) a computational framework to process this

2See the full ISL2OWL graphs at https://github.com/StenDoipanni/ISAAC/tree/main/

ISL2OWL

https://github.com/StenDoipanni/ISAAC/tree/main/ISL2OWL
https://github.com/StenDoipanni/ISAAC/tree/main/ISL2OWL


knowledge, and iii) a world representation that models the environment and the
robot’s behaviours. A combination of these components is named a Semantic Rea-
soning Framework (SRF) [32], from which we inherit the terminology to describe
the architecture in the next section.

3. Semantic Reasoning Framework

In this section we describe the overarching goal of our agent and its modular
structure. The fundamental goal of the agent is to gather information from the
environment and interpret it in image schematic terms, so as to maintain an
ongoing model of what it observes and engages with, and produce decisions on
how to continue that engagement. A visual representation of the architecture can
be seen in Fig. 1. We provide an informal, high-level descriptions of the various
modules in the following subsections, to delineate what roles symbolic inferences
ultimately play in our approach. We then describe the theories employed for the
reasoning task in more formal detail in Section 4.

Figure 1. Architectural overview of the agent.

3.1. Towards Engagement with the World

A naive understanding of perception would be that, modulo errors that in princi-
ple can be eliminated, it constructs a truthful picture of the world out of facts in-
dependent of contextual factors such as the goals of the perceiver. Following Hei-
degger, AI critic Hubert Dreyfus argued against this view and that it is responsi-
ble for the stalling of early AI efforts [33]. In an attempt to simplify and translate
a part of Dreyfus’ critique in more engineering friendly terms3, we would say that
the fact of noise requires filtering, and filtering requires assumptions as to what
is noise and what is meaningful. Thus, an agent is not a passive receiver of facts
from the environment via a perception pipeline, i.e. a computational structure
that feeds information in only one way.

Instead, an agent must actively choose what and how to look at, based on its
current understanding of how it is embedded in a situation. This understanding
includes beliefs about what the situation is and the agent’s place in it, and how
these may change in the future. Perception is then “taskable”: reconfigurable

3The coauthors with a robotics background find such “translations” very necessary because

it is otherwise hard from Dreyfus’ philosophy to infer what to actually do in the context of AI

research. Dreyfus may have intended to say AI is doomed, but as AI researchers we have to play
that game anyway.



based on the agent’s needs, in order to answer specific queries dictated by aspects
such as what the agent expects of a situation.

Thus, one of our goals in implementing our system, is to investigate the
knowledge structures which, if appropriately connected to sensoric and motor
procedures, would enable an agent to have an understanding of a situation and
its (plausible) evolution. For the sake of exposition we will use a shorthand and
speak of a symbolic layer implementing reasoning on image schematic assertions,
such as that some object supports another. It should be understood that the
meaning of such a statement is not captured merely at the symbolic layer, but
rather in how the symbolic inferences rewire sensors and actuators. “Support” is
just a name, it gets its meaning from what the agent expects to observe and may
decide to do and what outcomes this has in the world, including in the agent’s
own disposition about what to perceive and how to act.

Dreyfus’ critique was arguably influential in the development of the related
fields of reactive, embodied and situated robotics, a field which he himself later
reviewed and described as “Heideggerian AI” [34]. We place our work in the field
of reactive robotics too, so it is pertinent to notice that Dreyfus’ verdict was this
AI project also stalled – a conclusion he would probably maintain today as well.

Again simplifying and “translating”, Dreyfus observes that reactive robotic
systems are nonetheless trapped by their ontology. Reactive robots have a given,
finite, inventory of concepts and no ability to produce new ones regardless of any
interactions with the world they may experience. Simplifying even more, Dreyfus’
challenge is to have an agent able to teach itself to see new things.

To address this challenge we endow our system with the ability to store snap-
shots of sensor data and automatically annotate them as exemplars of concepts
created at the image schematic layer. These “new concepts” have a given struc-
ture – “an object that can play a particular role in a situation satisfying some
description” – but can in principle be arbitrarily complex based on how intricate
the role and situation descriptions are. Simply creating a new concept expression
is of course not enough to produce something meaningful, which is why the stored
exemplars are used to retrain perception – literally, training it to see new pat-
terns. Thus, the new concepts become grounded in new perception procedures to
recognize them in the world, and in ways to use the new objects once discovered
– the concepts describe what roles they can play.

This is made possible precisely by the interplay of a symbolic layer main-
taining an agent’s understanding of its situation, and its subsymbolic sensorimo-
tor apparatus. The sensors can partition the world in an infinity of ways – in
other words, the pixels of an image can be clumped arbitrarily – while the image
schematic understanding picks out which ways may be meaningful. This allows
the system to somewhat escape the ontology trap seen by Dreyfus, because it is
not limited to an initial set of objects it can recognize and which it is forced to
treat as atomic. Instead, it can discover “functional parts”, i.e. partition objects
based on how the objects play the roles they play in a situation.

3.2. The Perception Module

The perception module offers the agent a conversion between numeric sensor data
obtained through an RGB and depth camera and qualitative descriptions. It fulfils



this task by answering queries such as object, relative movement, and contact
detection. A query is represented as a triple of form (p, s, o) where p indicates
the type of query, and s and o are objects. Note that o can also be left blank, in
which case the query is interpreted as asking about all objects that move relative
to/contact object s.

Figure 2. Overview of the perception module.

As shown in Fig. 2, the perception module produces annotations of pixels
in the image. Neural networks – YOLOv8 models [35] – are used to annotate
pixels as belonging to one of several classes of interesting objects; see Fig. 3.
These annotations are referred to as “segmentations” (of the image into objects).
Another annotator is the contact region annotator, which flags pixels close to an
area where two objects of interest are in contact.

Figure 3. Left: a 3rd person view of the turtlebot in the scene. Middle: segmentation masks
from YOLO. Right: optical flow points (purple) and contact masks (yellow) superimposed on
the robot’s RGB image.

The main perception output is a set of qualitative descriptions expressed
as triples of forms (pso), (−pso) where p can be contacts, approaches, departs,
stillness, and −p can be −contact (objects not in contact), and a set of contact
masks. For perception to assert any triple, or produce contact masks, it has to be
asked to look. Without queries, there will be no perception results.

3.3. The Reasoning Module

The reasoning component is responsible for maintaining a belief state about the
situation and deciding what to do based on that belief, see Fig. 4 for an overview.
Most of the reasoning is done with (defeasible) rules. For the work in this paper,
defeasibility was not yet used and the inferences can be implemented via SWRL.

The main constituent of the robot’s belief is a set of persistent (image)
schemas, i.e. assertions about relationships between objects such as Contact,



Figure 4. Overview of the reasoning components.

Support, as well as assertions about the robot’s “goals”. Reification steps are

necessary because one can assert statements about image schematic relationships,

e.g. the presence of an image schema may prevent a goal from being fulfilled.

Thus, a statement coming from perception that (contact a b) must be converted

into a set of statements about the existence of an entity of type Contact, with

participants a and b – and this Contact entity is then further related to other im-

age schemas perceived by the agent. Reifications also introduce new entities: the

rule engine our agent uses does not allow existential rules, however the inference

that certain special, “reifiable” predicates hold for a pair of entities will trigger

the creation of a new entity and relationships to that predicate’s arguments.

The reasoning module handles statements represented as triples, so these can

be said to describe a graph. Some queries are convenient to handle with dedi-

cated graph connectivity tests as opposed to rule-based inference, and thus re-

ceived their own submodule: “dependency queries”, which find entities/relation-

ships necessary for some path to exist between certain other entities.

4. Image-Schematic Knowledge For a Naive Theory of Support

We now present part of our agent’s theory related to the image schema Support.

Our agent uses a rule engine and reification in its reasoning and thus we will give

the axioms here not as rules (all variables universally quantified), but as FOL

expressions. Variables are expressed in bold font.

We first describe a theory of Support situations, which we take to be that

an object is supported if and only if it does not fall. We allow ourselves to make

use of two categories of atypical objects – the floor, which exerts gravity from a

distance, and Fixed objects, unmovable by force application. Other Objects are

“typical”: they can be moved by forces, and do not exert forces remotely. Forces

act on objects and have Directions, and directions may be opposite each other.

For space reasons, we leave out disjointness of Fixed and Object and their common

superclass of physical entities that can exert forces, and domain and range axioms

that can be filled in by the reader from the informal glosses below.

A force that affects an object is exerted by some object (axiom 1). Gravity is

a force with direction down (ax. 2), exerted by the floor, and acting on all objects

(ax. 3). If an object other than the floor exerts a force on another, the two are

in contact (ax. 4); if two objects are in contact, they exert forces on one another

(ax. 5). The floor can exert an upward force only when in contact (ax. 6).



∀f ,o : aff(f ,o) → (∃o2 : exrt(o2, f)) (1)

∀f : Grv(f) → Frc(f) ∧ dir(f , down) (2)

∀o : Obj(o) → (∃f : exrt(floor, f) ∧Grv(f) ∧ aff(f ,o)) (3)

∀o1,o2, f :(o1 6= floor) ∧ exrt(o1, f) ∧ aff(f ,o2) →

(∃c : Con(c) ∧ hasPrtcp(o1) ∧ hasPrtcp(o2))
(4)

∀c,o1,o2 :Con(c) ∧ hasPrtcp(o1) ∧ hasPrtcp(o2) →

(∃f : exrt(o1, f) ∧ aff(f ,o2))
(5)

∀f ,o :exrt(floor, f) ∧ aff(f ,o) ∧ dir(f , up) →

(∃c : Con(c) ∧ hasPrtcp(c, f loor) ∧ hasPrtcp(c,o))
(6)

If a “typical” object does not move in the direction of a force exerted on it,

then another force acts on that object in opposite direction (ax. 7). If an object

exerts an upward force on another - through contact - then it is below (ax. 8).

∀o, f ,d :Obj(o) ∧ aff(f ,o) ∧ dir(f ,d) ∧ ¬movDir(o,d) →

(∃f2,d2 : aff(f2,o) ∧ dir(f2,d2) ∧ opp(d2,d)

¬exrt(o, f2))

(7)

∀o1,o2, f : exrt(o1, f) ∧ aff(f ,o2) ∧ dir(f , up) → below(o1,o2) (8)

“Typical” objects only have “typical” parts (ax. 9). Forces exerted on/by

objects are exerted on/by parts of them (ax. 10, 11).

∀o,p : Obj(o), hasPrt(o,p) → Obj(p) (9)

∀o, f : exrt(o, f) → (∃p : hasPrt(o,p) ∧ exrt(p, f)) (10)

∀o, f : aff(f ,o) → (∃p : hasPrt(o,p) ∧ aff(f ,p)) (11)

A Support situation has supportee and supporter (ax. 12). A supportee does

not fall (ax. 13), a supporter exerts an upwards force on the supportee (ax. 14).

∀s : Supp(s) → (∃e, r : suppee(s, e) ∧ supper(s, r)) (12)

∀s, e : suppee(s, e) → ¬movDir(e, down) (13)

∀s, e, r :Supp(s) ∧ suppee(s, e) ∧ supper(s, r) →

(∃f : exrt(r, f) ∧ aff(f , e) ∧ dir(f , up))
(14)

Our agent actually uses descriptions of situations, so we need axioms to tell

it what to query from perception to check that a Support description still applies,



and upon what perceptual results it should come to believe a Support description
applies. I.e., what are consequences of a Support situation in the above theory
become expectations to be had if a Support description is believed to be satisfied
(ax. 15), and symptoms to diagnose as a Support description applying (ax. 16).

∀s, e : DSupp(s) ∧ suppee(s, e) → qrelMov(e, f loor) ∧ qCon(e)

(15)

∀e, r, c :Con(c) ∧ hasPrtcp(c, e) ∧ hasPrtcp(c, r) ∧ below(r, e)∧

¬movDir(e, down) → (∃s : DSupp(e) ∧ suppee(s, e) ∧ supper(s, r))

(16)

The descriptions an agent believes, and the perception results they are based
on/applied to, are attached to one iteration of its perception-action loop. Percep-
tion queries produced at one iteration constrain available results at the next.

5. Functional Object Parts: Define, Recognize, Use

We now describe how the agent’s theories described in Section 4 and the percep-
tion system pick out a new object concept, which is then used to teach perception
to recognize the object, and how it makes motion planning queries feasible.

Predicates such as qCon(e) are a trigger for perception to look for objects in
contact with e. Perception returns not only a statement of two objects being in
contact, but a “contact mask”: points near where this contact occurs. The theory
of support asserts parts in contact also exert and are affected by forces relevant
in the support situation. For an object class, e.g. Mug, which the agent observes
supported by a Hook, a functional part, used to support the mug using the hook,
is one for which there is an observation of the part playing the supportee role:

∀x :MugSuppbyHook(x) ↔

(∃c, s,m,h : Con(c) ∧DSupp(s) ∧Hook(h) ∧Mug(m) ∧ hasPrt(m,x)

∧ suppee(s,m) ∧ supper(s,h) ∧ hasPrtcp(c,x) ∧ hasPrtcp(c,h) ∧ below(h,x))

(17)

Treating the definition of MugSuppByHook as a new concept allows the agent
to collect images and contact masks that are observations of its instances, and
retrain the neural network responsible for object detection. Thus, MugSuppBy-
Hook becomes a class of “object” the network can recognize, like Mug and Hook
are in this example. Crucially, the network can recognize a MugSuppByHook even
outside of a “supported by Hook” situation. What object detection labels as Mug-
SuppByHook is such that it can play a supportee role in a possible situation.

The MugSuppByHook object is then useful when the agent is given a goal
to support the mug from a hook. Such a goal needs motion planning, but before



Figure 5. Functional parts. Left: a frame stored for training, with annotations of functional

parts. Right: frame where the newly trained network is used to recognize functional parts.

one can apply search one needs to know what mug target pose would prevent its
falling away from the hook. The theory of support provides necessary conditions:
if the mug is supported by the hook, then they must be in contact, with the mug
above; another constraint says the regions occupied by mug and hook should not
overlap. Such a description is usable by a constraint solver to find a satisfying
pose4. Unfortunately, many of the satisfying poses will not result in the mug being
supported, e.g. having just the outside bottom of the mug touch the hook is not
a stable configuration and the mug will fall.

Using the part of a mug labeled as MugSuppByHook, instead of the whole
mug, as the entity for which to solve constraints reduces the search space, and
also makes it virtually guaranteed that if a pose satisfying the constraint is found,
then the mug is in fact supported by the hook.

6. Discussion, Conclusions, and Future Work

In this work we presented a neuro-symbolic architecture for cognitively inspired
reactive roboticsand we escaped Dreyfus’ ontology trap via learning new func-
tional properties of existing objects and creating new concepts starting from sen-
sor data. We have shown how through a combination of symbolic inference driven
by image schematic knowledge, and numerical procedures such as perception al-
gorithms and geometric constraint solvers, an artificial agent is able to recognize
from observed situations examples of “functional parts”, i.e. parts of objects that
are relevant for particular image schemas. Through associating the concept ex-
pression for a functional part to a set of observations it is then possible to train
perception to recognize a new kind of object. Further, because the new object is
a functional part it assists in the solution of motion planning tasks, because it
focuses the search for arrangements conducive to manifesting an image schema.

We are pursuing several avenues for continuation. One is to expand the role of
geometric inference and physics simulation so as to incorporate anticipation. The
main direction however is to expand the depth of time that the agent can consider.

4Since we have depth data, what the agent sees as labeled objects are sets of 3D voxels which
can be moved and checked for collisions to find coordinates satisfying some symbolic constraint.



Its current operation attends only to the current moment, with the previous visual
image used to compute relative movements. Schemas are persistent only in the
sense that a set of triples that held at a previous step may still hold now, and
previously captured images with annotations of functional parts are treated as
independent of each other. However, functional parts involved in a situation often
become obscured from vision by performing their role; e.g. the container part of
a spoon sinking into a soup. Thus, it is necessary to annotate functional parts
on frames where they do not yet perform the function, which requires, at the
symbolic level, an understanding of a sequence of frames as observing a process
with image-schematic consequences, and at the numeric level techniques to match
frame parts assumed to exist at a particular location but invisible.
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[20] Kröger F, Merz S. Temporal Logic and State Systems. Texts in Theoretical Computer

Science. An EATCS Series. Springer; 2008. Available from: https://doi.org/10.1007/

978-3-540-68635-4.

[21] Hedblom MM. Image Schemas and Concept Invention: Cognitive, Logical, and Linguistic
Investigations. Cognitive Technologies. Springer Computer Science; 2020.

[22] Hedblom MM, Kutz O, Mossakowski T, Neuhaus F. Between Contact and Support:
Introducing a logic for image schemas and directed movement. In: Esposito F, Basili R,
Ferilli S, Lisi FA, editors. AI*IA 2017: Advances in Artificial Intelligence; 2017. p. 256-68.

[23] Hedblom MM, Pomarlan M, Porzel R, Malaka R, Beetz M. Dynamic Action Selection
Using Image Schema-Based Reasoning for Robots. In: The 7th Joint Ontology Workshops
(JOWO). Bolzano, Italy; 2021. .

[24] Dhanabalachandran K, Hassouna V, Hedblom MM, Küempel M, Leusmann N, Beetz
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