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Abstract. The paper presents a spatio-temporal ontology guided by a particular
methodology, in which the semantics is constructed within a spatio-temporal in-
terpretation structure that is built up in three stages. The first, stage stipulates a
standard classical model of time and space. This structure forms the grounding for
the interpretation. The next stage is the specification of domains of entities, which
are either elements of the grounding structure (time points and regions) or con-
structions from these elements (mappings from time to space associated with indi-
viduals existing within the spatio-temporal structure). The final stage is the defini-
tion of vocabulary in terms of the grounding structure and the specified domains.
This definitional stage can be further subdivided into three types of specification:
direct grounding of primitives onto the underlying structure, indirect grounding by
defining additional vocabulary in terms of grounded primitives, partial grounding
by specifying semantics types and axioms to constrain the meaning of vocabulary
that is not explicitly defined.

The main goal of the paper is to advocate a methodology rather than a specific on-
tology. We suggest that building up in this way, results in robust ontologies, whose
assumptions can be clearly seen, since they are encapsulated within the grounding
stage and domain specifications. Although the definitional stage may incorporate a
diverse and expressive vocabulary, its terms are essentially just labels for properties
and relations that were already implicit within the grounding structure.

Keywords. Foundational Ontology, Ontology Construction Methodology, Definitions,
Spatio-Temporal Semantics

1. Introduction

The paper you are now reading is the result of a long process, of reformulation and reori-
entation. Our original aim was to develop an ontology of physical and temporal entities
that could describe the behaviour of moving objects and clearly explain the distinctions
and interrelations between categories such as ‘state’, ‘event’ and ‘process’, and would
compare and contrast the categorisation with other established ontologies. However, as
the work developed in that direction, it seemed that the original goal might have been
poorly suited to our methodology. What we found is that, although we could specify a
large variety of different kinds of temporal entity, it was unclear how one should com-
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pare these to the categories of other ontologies or whether such comparison would be
informative.

Consequently, our main aim is now to present our methodology. Although it does
not result in neat categorisations of different kinds of entity, it does provide a rigorously
grounded and highly expressive representation language which will believe to be a pow-
erful tool for knowledge representation and ontological analysis.

1.1. Can Upper Ontologies Play a Foundational Role?

For certain types of application, an information system can make use of an ontology to
get a large benefit with little pain. These would typically be applications where we want
to organise and identify objects that have a wide variety of specific properties and rela-
tionships but all objects lie within a small number of general categories (e.g. people, gifts
and birthday dates), and the relevant relationships between objects of different categories
are limited and well-understood. Although the relationship between a person and their
birthday is ontological complex, a simple but useful information system may just take
this as a primitive relational fact which may trigger certain actions (e.g. sending alerts
to a person’s friends). It could also do some clever reasoning about attributes of possible
gifts to make a helpful recommendation.

Yet we only need to consider a slightly broader range of information to find that the
complex ontology of birthdays could easily cause a headache for an information system
designer. Maybe we want to store actual dates of birth as well as calendar birthdays,
and dates of birthday parties that could be different from the actual birthday (and we
need to order the right number of candles, and we need to stop reminding people to send
toiletries to dead people). Perhaps, our range of gifts includes perfumes and books. We
realise that a person may be content to receive exactly the same perfume on their next
birthday as they received on their last; but they would be less happy to receive exactly
the same book. Is this just because perfumes are more relentlessly advertised, or is their
some significant category distinction between perfumes and books?

By distinguishing fundamental types of entities, upper ontologies can prevent con-
fusions that may arise from ambiguities of natural language terminology (such as differ-
ent senses of ‘birthday’ or ‘book’) insinuating themselves within information systems.
Established general ontologies such as SUMO [24], DOLCE [21], BFO [2], UFO [17]
aim to ensure clear differentiation between entity types, and hence mitigate such issues.
In this capacity, despite some differences in their basic categorisation of entities, they
can be very effective.

However, to support flexible interpretation of information involving disparate cate-
gories, one also needs to articulate the nature of connections between categories — for
example the relationship between the event of a birth to the calendar date of a birthday. In
this regard, we may be a little less sure about the success of established ontologies. On-
tologies employ words such as ‘instantiation’, ‘constitution’, ‘realisation’ and ‘manifes-
tation’ are used to express other relationships between categories. According to DOLCE
and BFO ‘endurants’ ‘participate’ in ‘perdurants’ (although the interpretation of ‘partic-
ipate’ may be a little different). In the terminology of GFO, a ‘continuant’ ‘exhibits’ a
‘presential’ at a point in time. In DOLCE the quality of redness may ‘inhere’ in a rose.
Providing such terminology certainly helps one recognise and refer to significant rela-
tionships, but does little to support information processing that requires computational
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reasoning based on the meaning of these relationships. For that, we would need to give
them a more explicit semantics.

Of course we can give axioms. But when dealing with such general categories its
seems axioms can do little more that specify generic relation properties (e.g. functional,
1:1 etc.) and argument types. What we really want is concrete specifications of how, say,
events arise from sptio-termporal configurations or the specific conditions under which
a physical object might manifest an intellectual artifact. To specify such conditions we
would need a solid foundation and precise machinery for constructing complex concepts
and entities from simpler ones. One may question whether ontologies that start with
only general categories of undifferentiated and unstructured entities can be considered
foundational in the sense of providing a solid base upon which an elaborate edifice can
be safely built.

1.2. Foundational Theories in the Wake of Logical Positivism

It is notable that these relatively modern formal ontology frameworks are of a very dif-
ferent character from the foundational theories that had been developed during the mid-
part of the 20th century. Carnap’s Der logische Aufbau der Welt [11] proposed that a
general theory of reality could be built up from simple basic facts by means of formal
constructions and logical axioms. Originally, this programme had been oriented towards
an empiricist view of reality, and had tried to construct theories based on ‘sense data’
(as advocated by Russell [28]). But it turned out to be very difficult to build up any
substantial theory directly from perceptual information; so the approach shifted towards
considering scientific theories as a starting point. These theories had been developed by
empirical observation and were much better suited to precise specification and formal
development.

Intensive work on this project was conducted by small but highly renowned commu-
nity of logicians, with interests in both philosophy and physics. Its high-point was per-
haps the international symposium on The Axiomatic Method with Special Reference to
Geometry and Physics held at UC Berkeley over the New Year of 1958 [19]. All papers
in that collection were influenced by the axiomatisation of classical particle mechanics
of [22], in which a set theoretic structure representing particles and their fundamental
properties, is constrained by equations of motion. Subsequently, Montague [23] showed
that classical mechanics can in fact be formulated on the basis of a far simpler underly-
ing mathematical structure than had been employed in [22]. He assumed only the sets
R and N of real and natural numbers and operations of addition and multiplication. The
logical status and interpretation of such set-theoretic formulations of physical theories
was investigated in detail in [29].

Another distinctive aspect of the work from this period is the prominence given
to questions regarding what are the ‘primitive’ terms of a theory and to the notion of
definability. Tarksi [31] (referenced many times in [19]) had shown that, any concepts
that can be defined within a theory that includes a complete axiomatisation of geometry
can actually be defined directly in terms of geometric primitives. Hence, development of
foundational theories of this period was guided by the idea that building a theory from a
very small number of primitive concepts was both desirable and feasible.
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1.3. Our Approach

Drawing inspiration from the foundational theories of scientific positivism mentioned in
the last section, our aim in this paper is to advocate and illustrate an approach to ontol-
ogy development based on building up from well-understood set-theoretic structures, by
means of definitions. We shall see that a huge variety of physical properties and temporal
conditions can be defined. The proposed framework makes use of ideas in previous work
of one of the authors [4,5,9,6] but gives more explanation of the design methodology and
presents this in a modular way. The key modules of our framework: structure, domain
and definition, will be explained in Sec 2.

One of the few recent ontology developments based on mathematical models of
space and time Bittner’s framework, based on classical mechanics [10]. Similarly to the
current paper, it develops an object language that is grounded on spatio-temporal struc-
tures. Possibly that could be used in a foundational way. However, that work was pre-
sented more as a way to augment or amend the content of existing ontologies rather than
to provide foundation upon which to build a new form of ontology.

1.4. Aversion to Idealistic Models and Low Level Primitives

An objection to our type of ontology construction, that may be widely held, is that it is
based on mathematical structures that are too idealised to correspond either to reality or
to any human conceptual framework, and therefore are not appropriate foundation for a
ontology applicable to describing either the real world or its conceptualisation.

The idea that computational knowledge representation and inference should be for-
mulated along the lines of commonsense reasoning has a long tradition in AI. An early
crystalisation of this view was presented in Hayes’ Naive Physics Manifesto [18]. As-
sociated wit this general programme is the idea that entities such as points, lines (and
perhaps numbers) that are seen as ‘mathematical’ rather than ‘commonsense’ in nature
are to be avoided. This position was adopted in the construction of several formal rep-
resentation languages for spatial reasoning [27,3], and more recently has been used to
critique the presence of ‘instants’ in ontologies of time [16].

Our view is that idealisation is reasonable and perhaps essential to foundational on-
tology. This is because in order to capture the logic of the conceptualisations of reality
that underlie natural ways of thinking and talking about reality, we must identify formal
structures and axiomatic principles, which abstract away from accidental superficial odd-
ities of natural languages, in order to provide a systematic and consistent basis for repre-
sentation and reasoning. And, once we do that, we implicitly determine certain abstract
structures that satisfy these axioms.

We believe that proponents of ‘naive’ conceptualisations often have a double stan-
dard in their view of what is ideal vs real. If we want to reject idealisation in a con-
sistent way, there are strong reasons to reject the characterisation of objects and spatial
relationships that is intrinsic to most foundational ontologies. Objects do not have clear
boundaries. Whether two objects are in contact breaks down when we examine objects
at a microscopic level. To go even further, there are strong arguments for the view that
all the categories and objects that seem to exist within our conceptualisation of the world
are idealisations of what is actually present in reality. Regarding categories, the inherent
vagueness in terms such as ‘cup‘ or ‘mountain’ indicate that considering portions of the
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world as instances of such categories is a patent idealisation, since there are not strict
criteria for applicability of ordinary language terminology.

Another concern one might have about our approach is that we assume only the
most basic types of entity, a few simple primitives yet are attempting to define categories,
properties and relationships spanning the range of human conceptualisation. It may seem
unfeasible that complex entities such as cups, cats and countries, and events such as birth-
day parties and wars could be defined just from spatio-temporal structures and object
trajectories. This may be so. In fact we believe that some structure accounting for pos-
sibility is required, perhaps a possible worlds structure, rather than just a single spatio-
temporal structure. Nevertheless, we believe that very rich conceptual vocuabularies can
be defined from just a few quite low level primitives.

2. Structure, Domain and Definition

We consider an Interpretation Structure to be a structure ⟨Γ,D ,∆⟩ consisting of a ground-
ing structure Γ, a domain specification D and a symbol definition specification ∆.

2.1. Structure

Following the approach used in works such as [22] and [23] and examined in detail in
[29], the starting point for our ontology is a set-theoretic model of time and space. We
specify the semantics of our spatio-temporal language in terms of a structure of the form
⟨⟨T,⪯⟩, ⟨R,G,V ⟩⟩.

⟨T,⪯⟩ is the time structure. For the ontology developed in this paper to fit our intu-
itive understanding of its vocabulary, we require that T is infinite and ⪯ is a dense total
order. We also presume that ⟨T,⪯⟩ is unbounded and continuous, although we believe
that our definitions would still make sense in relation to a bounded and/or countable
structure of time points.

⟨R,G,V ⟩ is the spatial structure, consisting of a set R of regions, a set G of geometri-
cal relations and functions over R, and V , a total order with a minimal element (0), which
is the range of metrical functions over R. Specifically, we assume that R is the set of all
regular open subsets of R3 and G = { ⊆,∼=,d,v }, with the value set being R. Here, ⊆ is
the subset relation over R, ∼= is the congruence relation. The function d : (R×R)→ R,
gives the distance between regions — i.e. d(r1,r2) = GLB({ed(p1, p2) | p1 ∈ r1, p2 ∈
r2}), where ed(p1, p2) is the Euclidean distance between points. And v : R → R gives
the volume of regions (in units commensurate with d).

In terms of the methodology we are highlighting, the particular choice of structure is
not so important. What is important is that the structure is declared and its properties are
definite. But there are some reasons why we chose this structure. As we shall see later,
density of the time series is important for the way that we define dynamic attributes of
objects, such at the condition of an object moving or growing. The need for time to be
continuous is less clear. However, if one takes space to be continuous then a coherent
theory of motion may also require time to be continuous, so that the trajectory of a
moving object could correspond to a mapping from time points to spatial locations.

With regard to the structure of space, one may argue that continuity is essential for
coherence. If a line is drawn from a point within a sphere to a point outside a sphere, we

5



would expect that the line must intersect the sphere at some point. It would seem rather
odd if this point were somehow missing. Yet for a unit sphere located at the origin of
an R3 coordinate system, and a line passing through the origin and oriented at 45◦ to an
axis, their intersection will be at a irrational coordinate (

√
2/2) along that axis. Related

issues persist even if we allow only extended 3D regions, since certain configurations
of 3D balls are only possible if their points of contact have irrational coordinates in R3.
Against this kind of argument for continuity, one could contend that such issues only
arise for ideal objects such as spheres, which do not exist in reality, whereas the actual,
imperfect objects of reality can happily exist in a coarse-grained, discontinuous space.

Another objection to our proposed model of time and space is that does not accord
with the geometries underlying the relativistic theories used in modern physics, which are
certainly more accurate and more general in scope than the, now superseded, Newtonian
theory. Thus the separated structures space and time, should be replaced by the integrated
Minkowski spacetime R4

1, or perhaps ⟨R4
1,F⟩, with F being a distinguished reference

frame or set of frames [30], or perhaps even ⟨R4
1,γ,F⟩, where γ is a Riemannian metric

on R4
1 describing gravitational curvature of the space.

2.2. Domain

The second item of our proposed interpretation structure is the domain specification.
Frege and Russell introduced the operations of quantification into logical languages in
order to specify properties of predicates in relation to a domain of discourse. In the
standard form of first-order logic the domain of discourse is a single non-empty set D of
elements. Neither the set nor its elements have any presumed special structure. But they
become structured by formulae that specify axioms or facts in relation to the domain by
means of predicates expressing properties and relationships.

In one sense of ‘ontology’, the ontology of a logical theory may be identified with
its domain of discourse. This is the meaning of Quine’s famous pronouncement: “To be
is to be the value of a bound variable” [26]. But in discussing the foundational ontologies
developed in recent decades, we would usually consider the ontology to consist primarily
of certain key disjoint sub-domains of the domain of discourse corresponding to funda-
mental kinds of entity. In contrast to this, in his paper The study of ontology [14], Fine
gave a general analysis of the structure of ontologies in terms of complex entities being
constructed from simple ‘given’ elements. Our methodology adopts this approach, but
rather that assuming general use of constructive rules, we only specify certain domains of
constructed entities. In fact, in the current presentation we only employ one constructed
domain: the set D ⊆ RT , is the domain of individual objects. The set RT is the set of all
functions from T to R. Thus each individual is a mapping from time points to spatial
regions, giving the individual’s extension at each time.

2.3. Definition

Tarski [31] gave formal proofs of a method of determining definability that had been
proposed by Padoa [25]. The method rests on the presumption that if we have a theory
expressed in using the predicate terms {τ,π1, ...,πn}, then τ is definable by means of
the vocabulary {π1, ...,πn} if and only if, all models that have the same valuation of all
atomic propositions expressed with terms {π1, ...,πn} must also have the same valuation
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for all atoms involving τ . Or more informally, we can say that fixing the situation with
respect to descriptions using {π1, ...,πn} will also fix all descriptions using τ .

The potential repercussions of this definability criterion in relation to the design of
ontologies, was previously explored in [5,6]. In relation to the methodology that we are
presenting here, a key observation is that any property or relation, whose applicability
in a given situation can be judged from knowledge of the physical characteristics of that
situation (i.e. positions and constitution of physical objects), can be defined in terms of
any set of primitives that would be sufficient to describe the physical situation. This gives
strong support for our belief that a very rich conceptual vocabulary can be defined from
a simple spatio-temporal structure. However, as mentioned above, we bielve that some
notion of possibility would need to be added to get a comprehensive framework. (We
will not here consider the issue of whether mental concepts can be reduced to physical
concepts and possibilities.)

3. A Formal Spatio-Temporal Language and its Semantics

We now give a concise specification of a formal language, whose semantics is directly
fixed to the most standard classical model of time and space. Such structures all include
the same fixed ‘grounding’ structure consisting, a set-theoretic model of time and space.
But anchored to that are non-fixed structures that specify: the domain of individuals, and
the interpretation function for the object language vocabulary.

3.1. Spatio-Temporal Interpretation Structures

A spatio-temporal interpretation structure takes the form:

I = ⟨Γ,D ,∆⟩ = ⟨ ⟨⟨T,⪯⟩,⟨R,G,V ⟩⟩, ⟨T,R,D⟩, ⟨V ,δ ,Θ⟩ ⟩ ,
where

• T is a set of time points with a dense, total order ⪯,
• R is a set of spatial regions and G = { ⊆,∼=,d,v } specifies geometrical relations

subset and congruence over R, distance d : (R×R)→V and volume R →V .
As explained in Sec. 2.1, we assume R to be the regular open subsets of R3, and
the value range V to be R.

• ⟨T,R,D⟩ gives the domains of quantification, with T and R being just the sets of
time points and regions in the grounding structure Γ. The set D ⊆ RT is the domain
of individuals. This is a constructed domain, as explained in Sec. 2.2 above.

• V = ⟨N ,T ,F1,F2,G ,ext⟩ is a vocabulary comprising:

* T = {. . . , ti, . . .} — time point symbols,
* R = {∅, . . . , ri, . . .} — spatial region symbols (including null region, ∅),
* N = {a,b,c, . . .} — names (denoting individuals),
* F1 = {. . . , f i, . . .} — fluent predicates,
* F2 = {. . . , gi, . . .} — bi-fluent predicates,
* G = { ⊆,∼=,dist, vol, . . .} — primitive geometrical relations and operators,
* ext — the extension function,

• δ is a denotation function mapping vocabulary symbols to semantic objects.
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• Θ is an auxiliary theory that is employed to define and constrain further vocabulary
in terms of the grounded primitives in V .

We specify the denotation function δ as the union of functions giving denotations
for each of the non-logical symbol types. Thus, δ (α), will be equal to δτ(α), where τ is
the symbol type of α . These functions are defined by:

• δT : T → T
• δR : R → R with δR(∅) = /0,
• δN : N → D, where D ⊆ RT ,
• δF1 : F1 → 2(D

n×T ), n is the arity of the fluent predicate,

• δF2 : F2 → 2(D
n×T 2), n is the arity of the bi-fluent predicate,

• δext(ext(a, t)) = δN (a)(δT (t)), abreviated as δ (a, t).

δF1 gives the truth sets of fluent predicate symbols, which for an n-ary fluent will
be a subset Dn × T such that ⟨x1, . . . ,xn, t⟩ ∈ δF1( f ) iff the fluent f (x1, . . . ,xn) is true
at time t. This could also be expressed as a mapping Dn → 2T , so a fluent predicate is
associated with a mapping from tuples of individuals sets of time points. Similarly, δF2
provides a mapping from tuples of individuals to sets of pairs of time points (these will
typically correspond to intervals).

The specific vocabulary in G will be directly interpreted by functions in G as speci-
fied by the semantics of atomic propositions given below.

The interpretation of ext is defined so that δext(ext(a, t)) denotes the extension of
individual a at time t. Since a ∈ N , we have δ (a) ∈ RT ; so, δ (a) is a function from T
to R, which we can apply to the time δ (t), to get some region r ∈ R. To reduce symbol
clutter, we abbreviate δext(ext(a, t)) to δ (a, t).

3.2. Syntax and Satisfaction

We present syntax and semantics in tandem, by means of clauses that both specify syn-
tactic forms and also stipulate the conditions under which they are true according to any
given interpretation structure. We write I ⊩ ϕ to mean that interpretation I satisfies
the formula ϕ — in other words, ϕ is true according to I .

Satisfaction conditions relating to ‘grounded’ atomic formula, can be specified di-
rectly in terms of the spatio-temporal structure. For basic relations comparing terms we
can define:

• I ⊩ t1 = t2, ⊩ t1 ≤ t2 iff, respectively, δ (t1) = δ (t2), δ (t1)⪯ δ (t2) ,
• I ⊩ ρ1 = ρ2, ⊩ ρ1 ⊆ ρ2 iff, respectively, δ (ρ1) = δ (ρ2), δ (t1)⊆ δ (ρ2) ,
• I ⊩ ρ1 ∼= ρ2, iff, δ (ρ1)∼= δ (ρ2) ,
• I ⊩ dist(ρ1,ρ2)≤ dist(ρ3,ρ4) iff d(δ (ρ1),δ (ρ2))≤ d(δ (ρ3),δ (ρ4)) ,
• I ⊩ vol(ρ1)≤ vol(ρ2) iff v(δ (ρ1))≤ v(δ (ρ2)) .

Here, ρ denotes a spatial region and is either a spatial symbol, ρ ∈ R, or an extension
term, ρ = ext(a, t), with a ∈ N and t ∈ T .

Our choice of which concepts to ground directly upon the spatio-temporal structure
is not intended to be prescriptive. Rather, it can be customised to suit one’s purposes.
In any case, there is considerable flexibility, since, once we have defined a sufficiently

8



expressive basic concepts we can easily extend the vocabulary by definitions in the ob-
ject language. We note that, as proved in [8] the relations of spatial parthood (⊆), and
congruence (∼=) are sufficient primitives to axiomatise elementary Euclidean geometry.

We now specify in a general way, the interpretation atomic propositions formed by
combining arbitrary (i.e. not directly grounded) fluents or bi-fluents with time symbols.
To turn fluents into propositions, that are true or false in an interpretation structure, we
append ‘@t’, where t ∈ T . The semantics for these expressions is:

• I ⊩ f (a1, . . . ,an)@t iff ⟨δ (a1), . . . ,δ (an), δ (t)⟩ ∈ δ (f ) ,

• I ⊩ g(a1, . . . ,an)@[t1, t2] iff ⟨δ (a1), . . . ,δ (an), δ (t1),δ (t2)⟩ ∈ δ (g) .

In the above clauses, we see that the satisfaction conditions will depend on the par-
ticular interpretation functions δF1 and δF2 , which are completely unconstrained by the
general specification an interpretation structure. However, as we shall see shortly, these
interpretations will typically be constrained by axioms or definitions given in the the-
ory Θ, that ground particular fluents and bi-fluents in terms of the spatio-temporal struc-
ture and the extensions of individuals. Hence, only certain interpretation structures will
satisfy conditions appropriate to particular intended meanings of fluents and bi-fluents.

Finally, the semantics for complex formula formed with truth functional operators
and quantifiers are specified in the usual way:

• I ⊩ ¬ϕ iff I ̸⊩ ϕ ,

• I ⊩ (ϕ ∧ ψ) iff I ⊩ ϕ and I ⊩ ψ

• I ⊩ ∀υ [ϕ] iff ⊩ I ′ ⊩ ϕ , for all I ′ such that I ′ ≈υ I .

In the quantification clause, υ is a symbol in N ∪T . Variables are just name or time
symbols that are bound to a quantifier. I ′ ≈υ I means that I ′ is exactly like I except
possibly in the value of υ — i.e. δ ′(υ) may differ from δ (υ). We can define additional
connectives, ‘∨’, ‘ → ’, ‘ ↔ ’, and the existential quantifier ‘∃’ in the usual way.

3.2.1. Temporal Qualification of Propositions

So far, our semantics specifies which fluents are true at each time point. However it
does not tell us how to interpret complex propositions as being true or false at a given
time point. The non-fluent atomic propositions express relations between time points or
between spatial regions. Thus they do not change from time to time. So for any spatial
or temporal terms τ1 and τ2 and any comparison relation ‘*’, qualification by the ‘@’
operator is redundant:

• ⊩ (τ1 ∗ τ2)@t, iff ⊩ (τ1 ∗ τ2).

Also, since truth functions do not depend on time, we can give the following simple
specification for temporal qualification of truth-functional compound formulae:

• ⊩ (¬ϕ)@t iff ̸⊩ ϕ@t,

• ⊩ (ϕ ∧ ψ)@t iff ⊩ ϕ@t and ⊩ ψ@t .
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In the case of quantified formula considered with respect to a time point, the inter-
pretation of quantification with respect to time and region variables is straighforward.
However, if the quantification is with respect to an object name variable, in relation to a
particular time point t, we have two possible ways to specify the domain of quantifica-
tion. We can either quantify over the whole domain of objects including those that have
no physical manifestation at time t; or, we can restrict quantification to only those objects
that are manifest (i.e. whose extension is not ∅) at the time t:

• ⊩ ∀υ [Φ(υ)]@t iff ⊩ ∀υ [ Φ(υ)@t ]
• ⊩ ∀∗x[Φ(x)]@t iff ⊩ ∀x[ ¬(ext(x, t) =∅)→ Φ(x)@t ] (x ∈ N )

Here, υ can be any symbol in T ∪R∪N , but the second interpretation only makes
sense for object symbols in N . If we interpret quantification over objects according to
the first option, we can consider this to be a 4-Dimensional or eternalist view of objects.
By taking the second option we are considering that only those objects present at a time
can be considered to exist from the point of view of that time.

3.3. Axioms and the Auxiliary Theory Θ

According to our view of ontology, the core of our ontology framework is now complete.
The fundamental commitments of the ontology are encapsulated within the grounding
structure and the domain specification. In relation to those, we defined temporal and
spatial primitives and a language for relating entities both within and between the three
domains (time, space and individuals). The rest of the ontology will be constructed by an
additional theory Θ. This can be divided into two parts. Purely definitional axioms will
use the primitive vocabulary to ground the meanings of additional terms. Further axioms
can be used to specify meaning postulates that will constrain the interpretation of further
terminology for which it is difficult, perhaps impossible, to give a rigorous grounding.

4. Objects in Space

In this section we aim to give just a small sample of the potentially huge variety of
terminology that can be defined in terms of the structure presented above, and also of the
many ontologically significant distinctions that can between types of entity.

• C(ρ1,ρ2) ≡def ∀r1∀r2[dist(ρ1,ρ2)≤ dist(r1,r2)]

• O(ρ1,ρ2) ≡def ∃r[¬(r =∅) ∧ r ⊆ ρ1 ∧ r ⊆ ρ2]

• Compl(ρ1,ρ2) ≡def ∀r[¬O(r,ρ1)→ r ⊆ ρ2]

4.1. Fluents: changeable relations between individuals

We now specify some properties and relations among individuals. Certain properties of
individuals vary at different time points, in other words they are fluents.

• E(a)@t ≡def ¬(ext(a, t) =∅)

• C(a,b)@t ≡def C(ext(a, t),ext(a, t))
• O(a,b)@t ≡def O(ext(a, t),ext(a, t))
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From these definitions, we see that these fluents are fully defined just in terms of
objects, times and spatial properties of object extensions. So they are essentially just con-
venient ways of characterising the synchronous configurations of multiple trajectories.

4.2. Permanent Properties of Individuals

• P∗(a,b) ≡def ∀t[ext(a, t)⊆ ext(b, t)]
• DR∗(a,b) ≡def ∀t[¬O(a,b)@t]
• Rigid∗(a) ≡def ∀t1t2[ext(a, t1)∼= ext(a, t2)]
• Enduring∗(a) ≡def ∀t1t2t3[ ((t1 < t2 < t3) ∧ E(a, t1) ∧ E(a, t3))→ E(a, t2)

4.3. Constraints on Object Types

Upper ontologies often define categories according to high level properties such as per-
sistence through time, identity conditions, and the types of change entities of that cate-
gory they can undergo. As we just saw, our framework makes it easy to specify many of
these kinds of property as they affect individual objects and pairs of objects.

• Rigidx[Φ(x)] ≡def ∀x[Φ(x)→ Rigid∗(x)]

• Enduringx[Φ(x)] ≡def ∀x[Φ(x)→ Enduring∗(x)]

We can also define more complex quantifier-like expressions. For example:

• Sepx[(Φ(x)] ≡def ∀a∀b[ ¬(a= b) ∧ Φ(a) ∧ Φ(b))→ DR∗(a,b) ]

So we could write Sepx[Sock(x)] to assert that no two distinct socks may overlap.

5. Temporal Conditions and Entities

The definitions of the spatial relation fluents C and O illustrate the form of definition, by
which we can specify the meaning of fluents (properties and relationships true at a time
point) and bi-fluents (properties and relatioships true in relation to two time points. The
general form of suh definitions is:

• α(a1, . . . ,an)@t ≡def Φ(a1, . . . ,an, t)
• β (a1, . . . ,an)@[t1, t2] ≡def Ψ(a1, . . . ,an, t1, t2)

5.1. Dynamic Homeomeric Fluents

In natural languages we often refer to processes — that is, ongoing changes of certain
kinds. Processess may have some structure (such as the process of setting a table) but
an important type of process is those that have been called homeomeric, meaning that
all temporal parts of the process are, in some relevant sense, equivalent. For a significant
class of homeomeric processes, the conditions under which it occurs can be defined by
specifying a constraint that must satisfied over some arbitrarily small interval that sur-
rounds the time point. For example, the times at which the process of ‘moving’ is ongo-
ing (in a very general sense of ‘moving’) might be captured by the following definition:
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Moving(x)@t ≡def ∃t1t2[ (t1 < t < t2) ∧

∀t ′1t ′2[(t1 < t ′1 < t ′2 < t2)→¬(ext(x, t ′1) = ext(x, t ′2))] ]

This definition says that an individual x satisfies the fluent Moving at time t just in
case there is some time interval [t1, t2] that strictly contains t, and is such that for any two
distinct times within [t1, t2] the x extension of x is distinct. Since the definition refers only
to change in extension it includes processes such as growing, which might not usually
be described as ‘moving’. For example, a perfect cylinder would not count as moving if
it rotated about its axis. Also there is the case where an object hits a wall or oscillates in
such a way that it exactly retraces its trajectory immediately after a certain time point. In
such cases the object would not satisfy our definition of Moving at the point of reversal.

A possible definition of the process of growth (i.e. a dynamic fluent indicating
growth) is as follows:

Proceeds(grow(x), t) ≡def

∃t1t2[ (t1 < t < t2) ∧ ∀t ′1t ′2[ (t1 < t ′1 < t ′2 < t2)→ (vol(ext(x, t ′1)< vol(ext(x, t ′2))) ] ]

Open ended processes tend to be associated with changes in some observable value:
movement is a change in position, growth is an increase in size, shrinkage is a decrease
in size. But this may not always be the case. For instance we may not be able to define
‘burning’ as a change in some measure of burntness.

Our analysis and representation of dynamic fluents sheds light on the Dividing In-
stant Problem [20]. This is the presumed problem that, when there is some change from
the state where a condition holds to one where it does not hold, there is a dilemma con-
cerning whether or not the condition holds at the dividing instant between holding and
not holding. What we find (as also noted in [15]) is that certain fluents (e.g. moving can
only hold over open intervals of time, whereas others must hold over closed intervals.

5.2. Event Tokens

Natural language sentences often assert properties of particular occurrences of some
event type — for example: ‘Sue carefully brushed her teeth for 5 minutes in the bath-
room’. These occurrences, or instances, of an event type are called event tokens. To ref-
erence an event token within a formula we assume, following Davidson [12] that the
logical structure of sentences referring to event tokens. Thus the form of a sentence with
an event token would be:

(∃ε : β (a1, . . . ,an))[ Φ(ε) ]

But what kind of entity would the token variable ε be associated with? We do not have
any suitable type of entity in our given domain specification ⟨T,R,D⟩; however we may
be able to construct a suitable domain.

The assignment functions δF1 and δF2 for fluents and bi-fluents can be recast
into the forms: δF1 : (F1 ×Dn) → 2T and δF2 : (F2 ×Dn) → 2(T×T ). Hence, we can
specify δ ( f (a1, . . . ,an)) as denoting the set of time points when the fluent holds and
δ (g(a1, . . . ,an)) denoting the set of intervals at which a bi-fluent occurs. We can now
construct an event token as a pair consisting of an event type (set of intervals) and a par-
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ticular interval of occurrence of an event of that type. Thus the domain of event tokens is
a constructed domain, which is a subset of 2(D

n×T 2)×T 2. Allowing event token variables
to range over this constructed domain, we could rewrite the previous formula as:

(∃ε t1t2)[ ε = ⟨(β (a1, . . . ,an)), [t1, t2]⟩ ∧ β (a1, . . . ,an)@[t1, t2] ∧ Φ(ε) ] .

where, δ (ε) ∈ (2(D
n×T 2)×T 2), and the tuple δ ⟨τ1,τ2⟩ is evaluated as ⟨δ (τ1),δτ2⟩.

So, in the case of the tooth-brushing example, we would have:

(∃ε t1t2)[ ε = ⟨brush teeth(sue), [t1, t2])⟩ ∧ brush teeth(sue)@[t1, t2]

∧ dur([t1, t2]) = 5m ∧ Loc(sue,bathroom) ∧ Careful(ε) ]

6. Conclusion

We have hope to have explained and motivated a methodology for ontology design that
is significantly different from some well known ontologies, but draws on ideas from the
earlier tradition of scientific positivism. Whereas, those theories dealt only with quite low
level physical properties and relationships, we have indicated ways in which a frame-
work built in this way can be extended by precise definitions to encompass higher level
properties and relations, potentially generating a rich conceptual vocabulary.

Obviously, we are still a long way from constructing a practical ontology incorpo-
rating, cups, cats and camping holidays. To do that we would need to build up through
many stages both in terms of making abstractions and articulating relevant details. This
would require an extensive mid-level ontology, which would be both grounded in the
lower spatio-temporal primitives and also suitable for describing more every-day items
and circumstances. As we have said, this would almost certainly require the introduction
of a notion of possibility. We envisage that this might be modelled in terms of branching
possible histories, as was proposed in [9]. We would also need to account for terminol-
ogy that is not fully grounded because of its ambiguity or vagueness. For that one might
employ a supervaluation approach [13], or standpoint semantics as advocated in [7,1].
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