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Taxonomy of true statements

Taxonomy of true statements (playing with words)

trivial [i.e. clear for everybody, but everybody who?]

interesting [every true statement which is not trivial]

surprising [a collision between an expected and a factual truth]

paradoxical [so surprising, that initially you hesitate to give up
your expected truth; famous example: the French paradox:
drink daily a lot of wine and live longer!]

We have

{paradoxes} ⊂ {surprising statements} ⊂ {interesting statements}.

Theorem
Using the word paradox in the title of a talk keeps the audience
awake; the term suggests that the speaker has to say something
interesting which might be even surprising at first sight, but after a
second thought the results turn out to be trivial.
Proof: The proof will be presented in the Appendix.
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Model description

The model described for ordinary people, i.e.
non-mathematicians

Three types of passengers arrive at an airport,
1 business people [rich],
2 mass tourists [poor],
3 academic people [neither rich nor poor]

To go downtown from the airport there are two options,
(i) a taxi or (ii) a shuttle bus

Business people always take a taxi and mass tourists always
take the shuttle bus

Academics are free to choose between a taxi or the shuttle bus

The shuttle bus only leaves when it is full (and then
immediately a new shuttle bus becomes available)

For a taxi (possibly) you have to wait in line for a free taxi.
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Model description

The question for the academic:

When money is irrelevant what should I do:
- Go to the taxi stand and wait for a taxi or
- Enter the shuttle bus and wait until it is full?

The only criterion that counts [for the academic] is expected total
transit time [sojourn time], i.e. the sum of his waiting time [in the
queue for the taxi stand or in the shuttle bus] and his travel time.

We assume that the academic ‘knows’ the average arrival
intensities of the different types of passengers, the number of taxis,
the size of the shuttle bus and the travel times of the taxis and the
shuttle bus [at the level of probability distributions].
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Model description

What does the individual academic see upon arrival?

We distinguish two possible levels of knowledge:
1 He/she has full knowledge of the ‘transport situation’, i.e.

he can observe the number of waiting passengers at the taxi
stand and
he can see the number of occupied seats in the shuttle bus

2 He/she is not aware of the queue length at the taxi stand nor
does he know the number of occupied places in the shuttle
bus, but he knows all parameters involved.

Ad 1 The academic can choose for a selfish strategy or an
altruistic strategy

Ad 2 All academics together can choose for a user
equilibrium or for a social equilibrium.
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Model description

Selfish versus altruistic strategies

When the academic upon arrival has full knowledge of the system

he/she can choose the transport [taxi/shuttle] for which
his/her own expected transit time is shorter [selfish strategy]
or

he/she can possibly sacrifice him/herself to guarantee a
minimal long-run average transit time seen over all academics
[social or altruistic strategy].
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Model description

User equilibrium versus social equilibrium

When the academic upon arrival cannot observe the state of the
system

all academics can choose the taxi with a fixed probability such
that the long-run average transit times at the taxi stand and
at the shuttle bus are equal [user equilibrium]

all academics can choose the taxi with a fixed probability such
that the long-run average transit times of all academics is
minimal [social equilibrium]

To compare the different strategies our criterion of interest is this
long-run average transit time of the academics.
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Model description

Main question: What happens when the capacity of the
taxi stand is increased?

The capacity of the taxi stand can be increased by

faster taxis, i.e. shorter travel times

increasing the number of taxis

(for queueing people only!) decreasing the variance of the
travel time, ceteris paribus.

Ordinary people expect that the long-run average transit time of
the academics will decrease when the capacity of the taxi stand
will be increased.
This turns out not to be the case. For that reason we are faced
with a paradox: Increasing the capacity of the taxi stand
sometimes leads to longer average transit times! This phenomenon
is called the Downs-Thomson paradox.
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Model description

Model description

Two parallel queues
1 a standard M/G/c queue with individual service in FIFO order
2 an M/G [N]/∞ batch service queue: customers are served

simultaneously in batches of size N

Two Poisson streams of dedicated customers: type i arrives at
queue i with rate λi [i = 1, 2]

A third Poisson stream of general customers with rate λ

The mean service time at queue i is 1
µi

[i = 1, 2]

Upon arrival the general customers have to decide which
queue to join.

Quantity of interest: the steady-state average transit time [sojourn
time] of the general customers for different arrival strategies.

35 / 92



Introduction Probabilistic Routing State-dependent routing Heuristics Conclusions Appendix Social state-dependent routing The retrial queue State-dependent R-routing

Model description

Model

36 / 92



Introduction Probabilistic Routing State-dependent routing Heuristics Conclusions Appendix Social state-dependent routing The retrial queue State-dependent R-routing

What is the problem?

What is the problem?

To study the sensitivity of the average transit time for several
system parameters, given that the general customers act according
to one of the following type of strategies:

Probabilistic routing: with a fixed probability p general
customers choose to join queue 1

State-dependent selfish routing: upon arrival the general
customer chooses the queue with the smaller expected transit
time, given full knowledge of the state of the system

State-dependent social routing: the strategy for which the
overall expected transit time is minimal

Heuristic state-dependent routing: upon arrival the general
customer chooses the queue with the smaller estimated transit
time based on incomplete knowledge of the state of the
system.
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Overview

Probabilistic Routing

General customers only have knowledge of steady-state
expected delay in each queue

They choose queue 1 with probability p and queue 2 with
probability 1− p, resulting in a steady-state average transit
time Wi (p) at queue i [i = 1, 2]

General customers choose an optimal p according to Wardrop
principle: W1(p) = W2(p)

Wardrop principle

The journey times on all routes actually used are equal, and less
than those which would be experienced by a single vehicle on any
unused route.
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Overview

Definition

A user equilibrium is any value p∗ ∈ [0, 1] which satisfies at least
one of the following conditions,

1 W1(0) ≥W2(0). Then p∗ = 0 is a user equilibrium.

2 W1(1) ≤W2(1). Then p∗ = 1 is a user equilibrium.

3 For some p∗ ∈ (0, 1) : W1(p∗) = W2(p∗). Then p∗ is called a
mixed user equilibrium.

We are mainly interested in so-called stable mixed user equilibria,
i.e. values p∗ ∈ (0, 1) with the following two properties,

1 For some ε > 0 and for all p ∈ (p∗,min{p∗ + ε, 1}):
W1(p) > W2(p)

2 For some ε > 0 and for all p ∈ (max{p∗ − ε, 0}, p∗):
W2(p) > W1(p).
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The single-server case

User equilibria for the single-server case [c = 1]

W1(p) = steady-state transit time for a customer who joins queue 1

W2(p) = steady-state transit time for a customer who joins queue 2

W (p) = pW1(p) + (1− p)W2(p) =

the average transit time for all general customers.

The Pollaczek-Khintchine formula gives

W1(p) =
1

µ1
+

λ1 + λp

2µ1(µ1 − λ1 − λp)
[1 + c2

S ]

A simple steady-state analysis gives

W2(p) =
1

µ2
+

N − 1

2(λ2 + (1− p)λ)
.

Solve the quadratic equation W1(p) = W2(p) for p and check
whether the found equilibrium is stable.
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One server

Figure: Possible user equilibria
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One server

The Downs-Thomson paradox varying µ1

1 server, N = 3, λ = 1, λ1 = 0, λ2 = 0.1, µ2 = 1, 0 ≤ µ1 ≤ 3
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One server

The Downs-Thomson paradox varying c2
S

µ1 = 0.8 µ1 = 1.1 µ1 = 1.5

Paradox for c2
S

For values of µ1 where we observe a paradox, there is also a
paradox for the squared coefficient of variation

43 / 92



Introduction Probabilistic Routing State-dependent routing Heuristics Conclusions Appendix Social state-dependent routing The retrial queue State-dependent R-routing

Multiple servers

The Downs-Thomson paradox for more servers, varying µ1

As the number of
servers increases,
the interval in
which there is a
mixed equilibrium
decreases

Size of the
paradox also
decreases in the
number of servers
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Multiple servers

The Downs-Thomson paradox varying the number of
servers c

µ1 fixed at 0.55

vary the number of servers

Paradox found: expected
transit time increases in the
number of servers

1 server: p∗ = 0.034

2 servers: p∗ = 1
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Influence of λ1

Example including λ1 - probabilistic routing

1 server
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Overview

State-dependent routing

General customers have full knowledge of the state of the
system upon arrival,
Based on their knowledge they choose the queue with the
smaller expected transit time.

For exponential service times the state space is

S = {(i , j)|i = 0, 1, 2, . . . ; j = 0, 1, 2, . . . ,N − 1}.
A policy or strategy for the general customers is a partition of S
into two disjoint subsets S1 and S2 such that

(i , j) ∈ S1 ⇐⇒ the customer who sees state (i , j) chooses queue 1.

Notation D := (S1,S2). Define for every state (i , j) ∈ S seen by a
customer upon arrival

yD(i , j) = the expected transit time when the customer joins queue 1,

zD(i , j) = the expected transit time when the customer joins queue 2.
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Exponential service times

Under the assumption of exponential service times we get

yD(i , j) =
1

µ1
+ I{i≥c}

i − c + 1

cµ1
. (1)

Of course,

zD(i ,N − 1) =
1

µ2
for i = 0, 1, 2, . . . .

Further, if (i , j + 1) ∈ S1 then

zD(i , j) =
1

λ1 + λ2 + λ+ min{i , c}µ1
× [1 + (λ1 + λ)zD(i + 1, j)

+ λ2zD(i , j + 1) + min{i , c}µ1zD(i − 1, j)] .

If on the other hand (i , j + 1) ∈ S2 then

zD(i , j) =
1

λ1 + λ2 + λ+ min{i , c}µ1
× [1 + λ1zD(i + 1, j)

+ (λ2 + λ)zD(i , j + 1) + min{i , c}µ1zD(i − 1, j)] .
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Exponential service times

How to determine the selfish policy D∗ = (S∗1 ,S∗2 ) for which

(i , j) ∈ S∗1 ⇐⇒ yD∗(i , j) < zD∗(i .j)? (2)

We build up this policy D∗ gradually as follows [λ1 = 0]
1 Start with zD∗(i ,N − 1) = 1

µ2
and compare these quantities

with yD∗(i ,N − 1) for i = 0, 1, 2, . . .
2 Then (i ,N − 1) ∈ S∗1 ⇐⇒ yD∗(i ,N − 1) < zD∗(i ,N − 1)
3 Suppose we find (i ,N − 1) ∈ S∗1 for i = 0, 1, . . . , iN−1 and

(i ,N − 1) ∈ S∗2 for i = iN−1 + 1, iN−1 + 2, . . .
4 Then using the recursion scheme, set up a system of iN−1 + 2

linear equations to calculate zD∗(i ,N − 2) for
i = 0, 1, . . . , iN−1 + 1

5 Now for i = iN−1 + 2, iN−1 + 3, . . . the zD∗(i ,N − 2) can be
calculated directly from the recursion scheme

6 Then (i ,N − 2) ∈ S∗1 ⇐⇒ yD∗(i ,N − 2) < zD∗(i ,N − 2) for
i = 0, 1, 2, . . ..

7 Continue the above procedure for j = N − 3, . . . , 0.
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Exponential service times

The overall average transit time

Once we have determined the optimal selfish policy D∗ we can
calculate the steady-state distribution {πD∗(i , j)}(i ,j)∈S of the
continuous-time Markov chain [CTMC] which describes the
probabilistic evolution when the system is controlled by policy D∗.

The overall mean transit time for the general customers, say WD∗ ,
can then be calculated as

WD∗ =
∑

(i ,j)∈S

πD∗(i , j)
[
yD∗(i , j)I{(i ,j)∈S∗1 } + zD∗(i , j)I{(i ,j)∈S∗2 }

]
.

(3)
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Exponential service times

Numerical example for different servers I

N = 3, M = 20, λ = 1, λ1 = 0, λ2 = 0.1, µ2 = 1, 0 ≤ µ1 ≤ 3
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Exponential service times

Numerical example for different servers II

Figure: The expected transit times of general customers under
state-dependent routing for the selfish policy (red solid line) and for the
social optimal policy (green dotted line) for 1, 2, 3 and 5 servers.
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General service times

Coxian-2 service time

A random variable X is Coxian-2 distributed if S can be
represented as:

X =

{
A + B with probability b
A with probability 1− b

where A ∼ exp(µa) and B ∼ exp(µb), A,B independent random
variables.
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General service times

For Coxian-2 distributed service times the state space is

S = {(i , j , k)|i = 0, 1, 2, . . . ; j = 0, 1, 2, . . . ,N − 1; k = 0, 1, . . .},

where i = #customers in queue 1, j = #customers in queue 2 and
k = #customers in service-phase 1.
Now for a policy D = (S1,S2) we have

(i , j , k) ∈ S1 ⇐⇒ the customer who sees state (i , j , k) chooses queue 1,

Define again for every state (i , j , k) ∈ S seen by a customer upon
arrival

yD(i , j , k) = the expected transit time when the customer joins queue 1,

zD(i , j , k) = the expected transit time when the customer joins queue 2.
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General service times

Recursion scheme for the yD(i , j , k)

yD(i , j , k) =



1

kµa + (c − k)µb

(
1 + bkµayD(i , j , k − 1)

+(1− b)kµayD(i − 1, j , k)

+(c − k)µbyD(i − 1, j , k + 1)

)
, i > c ,

1

kµa + (c − k)µb

(
1 + bkµayD(i , j , k − 1)

+(1− b)kµayD(i − 1, j , k − 1)

+(c − k)µbyD(i − 1, j , k)

)
, i = c ,

1

µa
+

b

µb
, i < c .

(4)
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General service times

Recursion scheme for the zD(i , j , k)

zD(i ,N − 1, k) =
1

µ2
, for i = 0, 1, . . . ; k = 0, 1, . . .min{i , c}.

Let Λ(i , k) = λ+ λ1 + λ2 + iµa + (min{i , c} − k)µb.
If (i , j + 1, k) ∈ S1:

zD(i , j , k) =



1

Λ(i , k)

(
1 + (λ+ λ1)zD(i + 1, j , k + I{i<c}) + λ2zD(i , j + 1, k)

+bkµazD(i , j , k − 1) + (1− b)kµazD(i − 1, j , k − 1)

+(i − k)µbzD(i − 1, j , k)

)
, i = 0, 1, . . . , c

1

Λ(i , k)

(
1 + (λ+ λ1)zD(i + 1, j , k) + λ2zD(i , j + 1, k)

+bkµazD(i , j , k − 1) + (1− b)kµazD(i − 1, j , k)

+(c − k)µbzD(i − 1, j , k + 1)

)
, i = c + 1, c + 2, . . . .

(5)
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General service times

If (i , j + 1, k) ∈ S2:

zD(i , j , k) =



1

Λ(i , k)

(
1 + λ1zD(i + 1, j , k + I{i<c}) + (λ+ λ2)zD(i , j + 1, k)

+bkµazD(i , j , k − 1) + (1− b)kµazD(i − 1, j , k − 1)

+(i − k)µbzD(i − 1, j , k)

)
, i = 0, 1, . . . , c

1

Λ(i , k)

(
1 + λ1zD(i + I{n1<c}, j , k) + (λ+ λ2)zD(i , j + 1, k)

+bkµazD(i , j , k − 1) + (1− b)kµazD(i − 1, j , k)

+(c − k)µbzD(i − 1, j , k + 1)

)
, i = c + 1, c + 2, . . . .

(6)
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General service times

We want to find D∗ = (S∗1 ,S∗2 ) for which

(i , j , k) ∈ S∗1 ⇐⇒ yD∗(i , j , k) < zD∗(i .j , k) (7)

Again we build up this policy D∗ gradually, but now we introduce
truncation in queue 1:
When M customers are present in queue 1, no other customers will
be accepted. Then we can proceed as before

1 Start with zD∗(i ,N − 1, k) = 1
µ2

and compare these quantities
with yD∗(i ,N − 1, k) for i = 0, 1, 2, . . . and k = 0, 1, . . . , c

2 Then
(i ,N − 1, k) ∈ S∗1 ⇐⇒ yD∗(i ,N − 1, k) < zD∗(i ,N − 1, k)

3 Using the recursion scheme, set up a system of linear
equations to calculate zD∗(i ,N − 2, ) for i = 0, 1, . . . ,M and
k = 0, 1, . . . , c

4 Then
(i ,N − 2, k) ∈ S∗1 ⇐⇒ yD∗(i ,N − 2, k) < zD∗(i ,N − 2, k) for
i = 0, 1, 2, . . . ,M and k = 0, 1, . . . , c

5 Continue the above procedure for j = N − 3, . . . , 0.
58 / 92



Introduction Probabilistic Routing State-dependent routing Heuristics Conclusions Appendix Social state-dependent routing The retrial queue State-dependent R-routing

Numerical results

State-dependent routing - User optimum I

N = 3, M = 20, λ = 1, λ1 = 0, λ2 = 0.1, µ2 = 1, 0 ≤ µ1 ≤ 3
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Numerical results

State-dependent routing - User optimum II

Figure: The expected transit times of general customers under
state-dependent routing for the selfish policy for 1, 2, 3 and 4 servers and
different values of the squared coefficient of variation.
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Numerical results

State-dependent routing - Social optimum

The optimal social policy can be calculated using Markov Decision
Theory (no details here). Then of course, no paradox shows up!

N = 3, M = 20, λ = 1, λ1 = 0, λ2 = 0.1, µ2 = 1, 0 ≤ µ1 ≤ 3
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Numerical results

Two servers, selfish policy

When varying the squared coefficient of variation and fixing the
value of µ1 at 2.4 [not in the D-T interval!] and 0.8:

Paradox for c2
S

A paradox is observed for the squared coefficient of variation,
which, just as the paradox for µ1, shows multiple small jumps.
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Influence of λ1

Example including λ1 - state-dependent routing

1 server
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Heuristic state-dependent policies

Heuristic estimates for queue 1 and queue 2

In practice customers who want to decide which queue to join have
no knowledge of k = #customers in service-phase 1. So, they
cannot calculate

yD(i , j , k) = the expected transit time when the customer joins queue 1,

let alone

zD(i , j , k) = the expected transit time when the customer joins queue 2,

which also depends on future decisions.
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Heuristic state-dependent policies

So, we propose that customers only have knowledge of the number
of customers present in queue 1 and 2: i and j and we define

yH
D =

1

µ1
+ I{i≥c}

i + 1− c

cµ1
,

zH
D (i , j) = w1

(
N − i − 1

λ2

)
+w2

(
N − i − 1

λ+ λ2

)
+

1

µ2
, with w1+w2 = 1.

We introduce a heuristic state-dependent policy DH = (SH1 ,SH2 ) by

(i , j) ∈ SH1 ⇐⇒ yH
DH (i , j) < zH

DH (i , j). (8)

For this policy DH calculate the overall average transit time WDH

by considering the CTMC induced by policy DH , WDH =∑
(i ,j ,k)∈S

πDH (i , j , k)
[
yDH (i , j , k)I{(i ,j ,k)∈SH1 }

+ zDH (i , j , k)I{(i ,j ,k)∈SH2 }

]
.
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Examples

Examples of heuristic policies I

The expected transit times of general customers under
state-dependent routing for the optimal selfish policy and two
heuristics for one, two and three servers and different values of the
squared coefficient of variation.

c2
S = 0.5 c2

S = 1 c2
S = 2
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Examples

Examples of heuristic policies II
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Examples

Two servers, heuristic policy

When varying the squared coefficient of variation and fixing the
value of µ1 at 2.4 [not in the D-T interval!] and 0.8:

No paradox for c2
S

A paradox is not observed for the squared coefficient of variation,
due to the fact that the policy does not change for different values
of the squared coefficient of variation.
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Summary

The Downs-Thomson paradox shows up for user optimal
policies under both probabilistic and state-dependent routing
for the service rate µ1, the squared coefficient of variation c2

S

and the number of servers c

For almost all values of µ1, c2
S and c having full knowledge of

the system mitigates the effect of the paradox

For natural intuitively appealing strategies based on
incomplete knowledge of the system the effects of the
Downs-Thomson paradox can be dramatic

The paradox only shows up when changing a parameter
results in a different policy

For optimal social state-dependent strategies [calculated by
Markov decision theory] no paradoxes show up.
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Appendix

Theorem
Using the word paradox in the title of a talk keeps the audience
awake; the term suggests that the speaker has to say something
interesting which might be even surprising at first sight, but after a
second thought the results turn out to be trivial.

Proof: Trivial!
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Appendix

Theorem
Using the word paradox in the title of a talk keeps the audience
awake; the term suggests that the speaker has to say something
interesting which might be even surprising at first sight, but after a
second thought the results turn out to be trivial.
Proof: Trivial!
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Introduction

State-dependent routing - Social optimum

X1(t) = the number of customers in queue 1, including any
customer in service, at time t

X2(t) = the number of general customers waiting for service
in queue 2, not including those customers already in service,
at time t

X3(t) = the number of dedicated customers to queue 2
waiting for service in queue 2, not including those customers
already in service, at time t.

State space: S = {(n1, n2, n3) : n1 ∈ {0, 1, 2, . . . ,C}, n2, n3 ∈
{0, 1, 2, . . . ,N − 1}, n2 + n3 ≤ N − 1}

Let Λ = λ1 + λ2 + λ+ µ1.
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Transition probabilities

State-dependent routing - Social optimum

Transition probabilities: [for simplicity we take λ1 = 0]

p(n,n′; 1) =



µ1
Λ n′ = n− e1I{n1>0}
λ
Λ n′ = n + e1I{n1<C}
λ2
Λ n′ = n + e3 if n2 + n3 < N − 1
λ2
Λ n′ = (n1, 0, 0) if n2 + n3 = N − 1

0 otherwise

p(n,n′; 2) =



µ1
Λ n′ = n− e1I{n1>0}
λ
Λ n′ = n + e2 if n2 + n3 < N − 1
λ2
Λ n′ = n + e3 if n2 + n3 < N − 1
λ+λ2

Λ n′ = (n1, 0, 0) if n2 + n3 = N − 1
0 otherwise.
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Value-iteration

State-dependent routing - Social optimum

Cost function:

c(n; 1) = (n1 + n2) 0 ≤ n1 ≤ C − 1, 0 ≤ n2 ≤ N − 1, 0 ≤ n3 ≤ N − 1

c(n; 2) = (n1 + n2) +
λ

µ2
0 ≤ n1 ≤ C , 0 ≤ n2 ≤ N − 1, 0 ≤ n3 ≤ N − 1.

Recursion:

Vk+1(n) = n1 + n2 +
µ1

Λ

(
Vk(n − e1)I{n1>0} + Vk(n)I{n1=0}

)
+
λ2

Λ

(
Vk(n + e3)I{n2+n3<N−1} + Vk(n1, 0, 0)I{n2+n3=N−1}

)
+
λ

Λ

({
Λ

µ2
+ Vk(n + e2)I{n2+n3<N−1} + Vk(n1, 0, 0)I{n2+n3=N−1}

}
I{n1=C}

+min

{
Vk(n + e1);

Λ

µ2
+ Vk(n + e2)I{n2+n3<N−1}

+Vk(n1, 0, 0)I{n2+n3=N−1}

}
I{n1<C}

)
.
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Numerical example

Numerical example

N = 3, M = 20, λ = 1, λ1 = 0, λ2 = 0.1, 0 ≤ µ1 ≤ 3
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Numerical example

Strategy for µ1 = 1

Strategy for the social optimum:

ss(n1, n2, 0) =



1 2 2
2 2 2
2 2 2

.

.

.

.

.

.

.

.

.
2 2 2

 , ss(n1, n2, 1) =



1 2 −
2 2 −
2 2 −
.
.
.

.

.

.

.

.

.
2 2 −

 , ss(n1, n2, 2) =



1 − −
2 − −
2 − −
.
.
.

.

.

.

.

.

.
2 − −



Strategy for the user optimum:

su(n1, n2) =



1 1 2
1 2 2
1 2 2
2 2 2
...

...
...

2 2 2


Strategy for probabilistic routing: p∗ = 0.7298
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State-dependent routing

State-dependent routing

Social optimum:
expected transit time
decreases in the
number of servers

User optimum:

Fewer paradoxes
observed for more
servers
Increase in
paradox for
µ1 = 0.36
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The M/M/1−R retrial queue versus the M/G [N]/∞
batch-service queue

Two parallel queues
1 a standard M/M/1 retrial queue with individual service
2 an M/G [N]/∞ batch service queue: customers are served

simultaneously in batches of size N

Two Poisson streams of dedicated customers: type i arrives at
queue i with rate λi [i = 1, 2]

A third Poisson stream of general customers with rate λ

The mean service time at queue i is 1
µi

[i = 1, 2]

The mean retrial time at queue 1 is 1
ν [exponential]

Upon arrival the general customers have to decide which
queue to join.

Quantity of interest: the steady-state average transit time [sojourn
time] of the general customers for different arrival strategies.

78 / 92



Introduction Probabilistic Routing State-dependent routing Heuristics Conclusions Appendix Social state-dependent routing The retrial queue State-dependent R-routing

Intermezzo (joint work with Dinard van der Laan)

Consider the M/M/1−R retrial queue modelled as a CTMC
{(Ct ,Qt), t ≥ 0} with its state-space

S = {(k, j) |k = 0, 1; j = 0, 1, 2, . . .}

Here Ct describes the state of the server (0=idle, 1=busy) and Qt

the number of customers in the orbit at time t.
Introduce a tagged customer [in the orbit] and define

y∗(j , k) = the expected (residual) delay of the tagged customer in

the orbit, given that j other customers are present in

the orbit and the server state is k .
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We have the following recursions

y∗(j , 0) =
1 + λy∗(j , 1) + jνy∗(j − 1, 1)

λ+ (j + 1)ν
, (9)

y∗(j , 1) =
1 + λy∗(j + 1, 1) + (j + 1)νy∗(j , 1) + µy∗(j , 0)

λ+ (j + 1)ν + µ
.

(10)

Substituting (9) in (10) gives after some manipulations

(λ2 + (j + 1)νλ)[y∗(j + 1, 1)− y∗(j , 1)] + λ+ µ+ (j + 1)ν =

(j + 1)νµ[y∗(j , 1)− y∗(j − 1, 1)] + νµy∗(j − 1, 1). (11)

With y∗(−1, 1) = 0 and the conjecture
y∗(j + 1, 1)− y∗(j , 1) = C = 1

2µ−λ we find from (11) and (9)

y∗(j , 1) =
λ+ 2µ+ (j + 2)ν

ν(2µ− λ)
, (12)

y∗(j , 0) =
λ+ 2µ+ jν

ν(2µ− λ)
. (13)
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The conjecture

y∗(j + 1, 1)− y∗(j , 1) = CONSTANT =
1

2µ− λ
has been checked using the well-known results for the M/M/1-R
queue (ρ = λ/µ):

D =
λ(µ+ ν)

µν(µ− λ)
and p1j =

ρj+1

j!ν j

j∏
i=1

(λ+ iν)(1− ρ)
λ
ν

+1

where D is the long-run average delay in the orbit and
pkj = limt→∞ Pr(Ct = k; Qt = j) the limiting distribution of the

CTMC {(Ct ,Qt), t ≥ 0}. Then we find D =
∑∞

j=0 y∗(j , 1)p1j
?
=

∞∑
j=0

λ+ 2µ+ (j + 2)ν

ν(2µ− λ)

ρj+1

j!ν j

j∏
i=1

(λ+iν)(1−ρ)
λ
ν

+1 = · · · =
λ(µ+ ν)

µν(µ− λ)
.

This is encouraging, but not a formal proof of the conjecture!!
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WANTED: a probabilistic proof for the conjecture

∀j : y∗(j + 1, 1)− y∗(j , 1) = CONSTANT =
1

2µ− λ
.

SIMULATION RESULTS SHOW A PERFECT
CORRESPONDENCE EVEN FOR µ < λ < 2µ!!
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A retrial queue parallel with a batch-service queue

(joint work with Jacqueline Heinerman)

Figure: System with retrials and probabilistic routing
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Probabilistic Routing

User equilibria for the retrial model

W1(p) = steady-state transit time for a customer who joins queue 1

W2(p) = steady-state transit time for a customer who joins queue 2

W (p) = pW1(p) + (1− p)W2(p) =

the average transit time for all general customers.

The formula for the M/M/1−R queue gives

W1(p) =
1

µ1
+

(pλ+ λ1)(µ1 + ν)

µ1ν(µ1 − pλ− λ1)
.

As before a simple steady-state analysis gives

W2(p) =
1

µ2
+

N − 1

2(λ2 + (1− p)λ)
.

Solve the quadratic equation W1(p) = W2(p) for p and check
whether the found equilibrium is stable.
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Probabilistic Routing

probabilistic routing, varying µ1

Figure: Left: Expected equilibrium transit times of the general customers
for the parameters λ = 1, λ1 = 0.5, λ2 = 0.1, µ2 = 1, ν = 2,N = 7.
Right: Optimal p∗ as a function of µ1
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Probabilistic Routing

probabilistic routing, varying ν; µ1 = 1.25

Figure: Left: Expected equilibrium transit times of the general customers
for parameters λ = 1, λ1 = 0.5, λ2 = 0.1, µ2 = 1, µ1 = 1.25,N = 7.
Right: Optimal p∗ as a function of ν
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Probabilistic Routing

probabilistic routing, varying ν; µ1 = 2

Figure: Expected equilibrium transit times of the general customers for
parameters λ = 1, λ1 = 0.5, λ2 = 0.1, µ2 = 1, µ1 = 2,N = 7.
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Overview

State-dependent routing

General customers have full knowledge of the state of the
system upon arrival (irrevocably),
Based on their knowledge they choose the queue with the
smaller expected transit time.

The state space is

S = {(i , k , j)|i = 0, 1, 2, . . . ; k = 0, 1; j = 0, 1, 2, . . . ,N − 1}.
A policy or strategy for the general customers is a partition of S
into two disjoint subsets S1 and S2 such that

(i , k, j) ∈ S1 ⇐⇒ the customer who sees state (i , k , j) chooses queue 1.

Notation D := (S1,S2). Define for every state (i , k, j) ∈ S
yD(i , k, j) = the expected transit time of a tagged customer

in the orbit when i other customers are in the orbit,

the server is in state k, and j customers are in the batch.
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Expected transit time in the M/M/1−R queue

For (i + 1, k, j) ∈ S1 we get

yD(i , k, j) =
1

λ1 + λ2 + λ+ (i + 1)ν + kµ
(14)

×
[

1 + (λ1 + λ)yD(i + k , 1, j) + (i + k)νyD(i − 1 + k , 1, j)

+ (1− k)ν
1

µ1
+ λ2yD(i , k, j + 1) + kµyD(i , 0, j)

]
,

and if (i + 1, k, j) ∈ S2 then we have

yD(i , k, j) =
1

λ1 + λ2 + λ+ (i + 1)ν + kµ
(15)

×
[

1 + λ1yD(i + k , 1, j) + (i + k)νyD(i − 1 + k , 1, j)

+ (1− k)ν
1

µ1
+ (λ2 + λ)yD(i , k, j + 1) + kµyD(i , 0, j)

]
,
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Expected transit time in the M/M/1−R queue

zD(i , k, j) = the expected transit time when the customer joins queue 2.

Of course,

zD(i , k ,N − 1) =
1

µ2
for i = 0, 1, 2, . . . ; k = 0.1.

Further, if (i , k , j + 1) ∈ S1 then

zD(i , k, j) =
1

λ1 + λ2 + λ+ iν + kµ1
[1 + (λ1 + λ)zD(i + k , 1, j) (16)

+ λ2zD(i , k , j + 1) + iνzD(i − 1 + k, 1, j) + kµ1zD(i , 0, j)] .

If on the other hand (i , k , j + 1) ∈ S2 then

zD(i , k , j) =
1

λ1 + λ2 + λ+ iν + kµ1
[1 + (λ2 + λ)zD(i , k , j + 1) (17)

+ λ1zD(i + k, 1, j) + iνzD(i − 1 + k, 1, j) + kµ1zD(i , 0.j)] .
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Expected transit time in the M/M/1−R queue

The optimal selfish policy

The problem is to find the optimal selfish policy D∗ for which

(i , 0, j) ∈ S∗1 ⇐⇒
1

µ1
< zD∗(i , 0, j) (18)

and
(i , 1, j) ∈ S∗1 ⇐⇒ yD∗(i , 1, j) < zD∗(i .1, j) (19)

Determine smallest numbers Lj such that

y∗(Lj , 1) +
1

µ1
:=

λ1 + 2µ1 + (i + 2)ν

ν(2µ1 − λ1)
+

1

µ1
≥ 1

λ2
(N − j + 1).

For all i ≥ Lj , put (i , 1, j) ∈ S∗2 and for i ≥ Lj set

yD∗(i , 0, j) :=
λ1 + 2µ1 + iν

ν(2µ1 − λ1)
+

1

µ1

yD∗(i , 1, j) :=
λ1 + 2µ1 + (i + 2)ν

ν(2µ1 − λ1)
+

1

µ1
,
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Expected transit time in the M/M/1−R queue

The optimal selfish policy (cont’d)

Solve the system of equations (14) and (15).

Using the solution of (14) and (15), determine the policy D∗
recursively from the equations (16) and (17).
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