

CHMT 2019 – Enschede

Rotor Cooling Concept for the ASuMED Superconductive Motor

Ana Perez Project Engineer – Helium & Hydrogen Systems Department

Ruud van der Woude Project Engineer – Helium & Hydrogen Systems Department

CHMT 2019 – Cryogenic Heat and Mass Transfer, Enschede Demaco, It's all about Cryogenius!

Outline

Introduction

ASuMED: Advanced Superconducting Motor Experimental Demonstrator

- Air traffic grows 5% each year
- Flightpath 2050 fuel burn and emissions reduction (compared to 2000):
 - 75% CO₂ reduction
 - 90% NO_x and PM reduction
 - 65% noise reduction

Funded by Horizon 2020 programme:

Funded by the European Commission Grant No 723119

"ASuMED has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723119" "Herein we reflect only the author's view. The Commission is not responsible for any use that may be made of the information it contains"

November 2019

Demaco, It's all about Cryogenius!

Introduction

ASUME

ASuMED: Advanced Superconducting Motor Experimental Demonstrator

- **First fully superconductive motor** prototype for aerospace applications
- **1 MW** power at 6000 rpm
- Overall efficiency higher than 99%

Conditioning equipment for test: design, building, testing ۲

Demaco. It's all about Cryogenius!

Dual-Cryostat Concept: two separated cryostats for rotor and stator

Rotor Cooling System

Rotor Cryostat Reference Model

Rotor – SC Stacks – Rotating

- HT Superconducting stacks
- Stacks temperature 30K 35K

Inner Stator – Stationary

- Cooling fluid
 - Helium
 - Inlet Temperature 25K
 - Operating pressure 2 bar (a)

Gap

• 2 mm high

Required Rotor cooling power: 150 W

• Heat generated in the SC Rotor stacks + heat leak into the system

Rotor Cooling System

Rotor Cooling Concepts

- Conduction based cooling system: not feasible
- Convection based system: potential to achieve required cooling power

Externally Controlled Rotor Cooling System: CONVECTION based system

- Forced Circulation of cooling gas through the system
- Challenging system characterisation:
 - Rotating outer cylinder, ROTOR
 - Stationary inner cylinder, INNER STATOR
 - Influence of outer cylinder rotation unknown

Rotor Cryostat Design

Externally Controlled Rotor Cooling System, forced convection

Heat transfer & flow analysis

Engineering approach to analyse and size the Rotor Cooling System

• Goal: minimize design risk in an uncertain situation with limited resources

Analysis methods

- General assessment of flow types, literature study
 - Similarities with Taylor-Couette flow
- Classical analysis based on Reynolds and Nusselt numbers
 - Flat plate, pipe, stationary annulus
- FEM analysis (COMSOL)

Design

- Basic sizing based on worst case results from different kinds of analysis
- Additional measures prepared to improve performance if required

Heat transfer & flow analysis Asume Some Some Some Some Source So

Similarities with Taylor-Couette flow

- Taylor-Couette flow:
 - "Flow between independently rotating coaxial cylinders in a closed system"
 - Speciality of University of Twente Physics of Fluids group
 - Wall roughness important parameter
 - Finlets give remarkable increase of heat transfer (6 in proposed design)

Standard FEM codes of limited value

Heat transfer & flow analysis

Classical analysis of forced convection based system

- Turbulent flow: **Re = 14000**
- System characterisation:
 - Rotating outer cylinder, ROTOR
 - Stationary inner cylinder, INNER STATOR
- Literature study to define Nusselt number
 - Cylinders with walls at rest
 - Influence of outer cylinder rotation unknown

Preliminary heat transfer analysis, forced circulation

Scenario	ΔТ (К)	Q _{gap} (W)	Q _{goal} ratio	p
1	2	41	28 %	· ·
2	5	107	71 %	
3	10	226	150 %	
November 2019	CHMT 2019, I	Enschede	e Demaco, It's all about Cryogenius	

Geometry	Nu	
Flat Plate	70	
Ріре	45	
Stationary Annulus	35	

Nusselt Number = 20

POTENTIAL TO ACHIEVE REQUIRED COOLING POWER

Heat transfer & flow analysis Asume

European Commissio

Details for analysis – FEM analysis

- Helium mass flow through the system: 20 g/s ۲
 - From Re = 14000•
- **Pressure** in the system: 2 bar(a) ۲

Analysed Cases and Operating modes

	Ω (rpm)	ΔТ (К)	Analysis Case
Magnetisation mode	0	2	AC 1.1
	1200	2	AC 1.2
	3000	2	AC 1.3
Normal Operation	6000	2	AC 1.4
	6000	2	AC 2.1
	6000	5	AC 2.2
	6000	10	AC 2.3
Demaco. It's all about Cryogenius	CHMT 2019, Enschede		November 2019

Results for analysed Load Cases

	Q _{goal} ratio	Q _{gap} (W)	Ω (rpm)	ΔТ (К)	Analysis Case
Magnetisation mode	30 %	44	0	2	AC 1.1
	21 %	31	1200	2	AC 1.2
	29 %	43	3000	2	AC 1.3
Normal Operation	39 %	58	6000	2	AC 1.4
	39 %	58	6000	2	AC 2.1
	69 %	103	6000	5	AC 2.2
	100 %	150	6000	10	AC 2.3

- The heat transfer in the gap is determined by the speed of the rotor
- An increase of the temperature difference in the system results in an increase of the heat transfer

Results: Flow analysis

Magnetisation mode $\Omega = 0$ rpm, $\Delta T = 2K$

- Pressure flow
- Velocity: axial component
- Pressure drop: 10 mbar

Normal Operation: $\Omega = 6000$ rpm, $\Delta T = 2K$

- Pressure and drag flow: axial and phi components
- Swirl at the exit disk
- Back pressure development
 - Pump effect against flow direction
- Pressure increase in the system: 0.5 bar

Rotor Cooling System

Conclusions FEM analysis

- The Rotor Cooling System
 - Potential to achieve the required cooling power
 - Experimental validation: heat transfer and pressure drop
- Mechanical design is finalized after analyses

First test results

First hydrodynamic tests

- Rotor speed up to 800 rpm
- Very good sealing by ferro-fluidic seals up to 800 rpm: 10⁻⁶ mbar/(L.s) level
- More than 1 kW drive power required: significant loss in seals

- No change in pressure drop and flow rate of circulating cooling gas when the rotor speed increases
- Vortex breaker on exit disk seems effective

Status and Outlook

- Continued testing of Warm Demonstrator
 - Oswald & Demaco
 - End of the year
- Manufacturing and testing the Cold Demonstrator
 - Whole ASuMED consortium
 - First quarter next year

Thank you for your attention!

